京公网安备 11010802034615号
经营许可证编号:京B2-20210330
刚刚接触pandas的朋友,想了解数据结构,就一定要认识DataFrame,接下来给大家详细介绍!
import numpy as np import pandas as pd
data = {"name": ["Jack", "Tom", "LiSa"],
"age": [20, 21, 18],
"city": ["BeiJing", "TianJin", "ShenZhen"]}
print(data)
print("")
frame = pd.DataFrame(data) # 创建DataFrame
print(frame)
print("")
print(frame.index) # 查看行索引
print("")
print(frame.columns) # 查看列索引
print("")
print(frame.values) # 查看值
{'name': ['Jack', 'Tom', 'LiSa'], 'age': [20, 21, 18], 'city': ['BeiJing', 'TianJin', 'ShenZhen']}
age city name
0 20 BeiJing Jack
1 21 TianJin Tom
2 18 ShenZhen LiSa
RangeIndex(start=0, stop=3, step=1)
Index(['age', 'city', 'name'], dtype='object')
[[20 'BeiJing' 'Jack']
[21 'TianJin' 'Tom']
[18 'ShenZhen' 'LiSa']]
方法一: 由字典创建 字典的key是列索引值可以是
1.列表
2.ndarray
3.Series
# 值是ndarray 注意: 用ndarray创建DataFrame值的个数必须相同 否则报错 data2 = {"one": np.random.rand(3), "two": np.random.rand(3) } print(data2) print("") print(pd.DataFrame(data2))
{'one': array([ 0.60720023, 0.30838024, 0.30678266]), 'two': array([ 0.21368784, 0.03797809, 0.41698718])}
one two
0 0.607200 0.213688
1 0.308380 0.037978
2 0.306783 0.416987
# 值是Series--带有标签的一维数组 注意: 用Series创建DataFrame值的个数可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639
1 0.921641
2 0.898810
3 0.933510
dtype: float64, 'two': 0 0.132789
1 0.099904
2 0.723495
3 0.719173
4 0.477456
dtype: float64}
one two
0 0.217639 0.132789
1 0.921641 0.099904
2 0.898810 0.723495
3 0.933510 0.719173
4 NaN 0.477456
# 值是Series--带有标签的一维数组 注意: 用Series创建DataFrame值的个数可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639
1 0.921641
2 0.898810
3 0.933510
dtype: float64, 'two': 0 0.132789
1 0.099904
2 0.723495
3 0.719173
4 0.477456
dtype: float64}
one two
0 0.217639 0.132789
1 0.921641 0.099904
2 0.898810 0.723495
3 0.933510 0.719173
4 NaN 0.477456
方法二: 通过二维数组直接创建
data = [{"one": 1, "two": 2}, {"one": 5, "two": 10, "three": 15}] # 每一个字典在DataFrame里就是一行数据
print(data)
print("")
df1 = pd.DataFrame(data)
print(df1)
print("")
df2 = pd.DataFrame(data, index=list("ab"), columns=["one", "two", "three", "four"])
print(df2)
[{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 15}]
one three two
0 1 NaN 2
1 5 15.0 10
one two three four
a 1 2 NaN NaN
b 5 10 15.0 NaN
方法三: 由字典组成的列表创建 DataFrame
# columns为字典的key index为子字典的key
data = {"Jack": {"age":1, "country":"China", "sex":"man"},
"LiSa": {"age":18, "country":"America", "sex":"women"},
"Tom": {"age":20, "country":"English"}}
df1 = pd.DataFrame(data)
print(df1)
print("")
# 注意: 这里的index并不能给子字典的key(行索引)重新命名 但可以给子字典的key重新排序 若出现原数组没有的index 那么就填充NaN值
df2 = pd.DataFrame(data, index=["sex", "age", "country"])
print(df2)
print("")
df3 = pd.DataFrame(data, index=list("abc"))
print(df3)
print("")
# columns 给列索引重新排序 若出现原数组没有的列索引填充NaN值
df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"])
print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
方法四: 由字典组成的字典
# columns为字典的key index为子字典的key
data = {"Jack": {"age":1, "country":"China", "sex":"man"},
"LiSa": {"age":18, "country":"America", "sex":"women"},
"Tom": {"age":20, "country":"English"}}
df1 = pd.DataFrame(data)
print(df1)
print("")
# 注意: 这里的index并不能给子字典的key(行索引)重新命名 但可以给子字典的key重新排序 若出现原数组没有的index 那么就填充NaN值
df2 = pd.DataFrame(data, index=["sex", "age", "country"])
print(df2)
print("")
df3 = pd.DataFrame(data, index=list("abc"))
print(df3)
print("")
# columns 给列索引重新排序 若出现原数组没有的列索引填充NaN值
df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"])
print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
选择行与列
选择列 直接用df["列标签"]
df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100, index = ["one", "two", "three"], columns = ["a", "b", "c", "d"]) print(df) print("") print(df["a"], " ", type(df["a"])) # 取一列 print("") print(df[["a", "c"]], " ", type(df[["a", "c"]])) # 取多列
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 one 92.905464 two 91.107357 three 3.152801 Name: a, dtype: float64pandas.core.series.series'=""> a c one 92.905464 19.518051 two 91.107357 4.913662 three 3.152801 14.030304 pandas.core.frame.dataframe'="">
选择行不能通过标签索引 df["one"] 来选择行 要用 df.loc["one"], loc就是针对行来操作的
print(df)
print("")
print(df.loc["one"], " ", type(df.loc["one"])) # 取一行
print("")
print(df.loc[["one", "three"]], " ", type(df.loc[["one", "three"]])) # 取不连续的多行
print("")
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 a 92.905464 b 11.630358 c 19.518051 d 77.417377 Name: one, dtype: float64pandas.core.series.series'=""> a b c d one 92.905464 11.630358 19.518051 77.417377 three 3.152801 42.324671 14.030304 22.138608 pandas.core.frame.dataframe'="">
loc支持切片索引--针对行 并包含末端 df.loc["one": "three"]
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.loc["one": "three"]) print("") print(df[: 3]) # 切片表示取连续的多行(尽量不用 免得混淆)
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
four 45.591798 63.274956 74.056045 2.466652
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
iloc也是对行来操作的 只不过把行标签改成了行索引 并且是不包含末端的
print(df)
print("")
print(df.iloc[0]) # 取一行
print("")
print(df.iloc[[0,2]]) # 取不连续的多行
print("")
print(df.iloc[0:3]) # 不包含末端
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
four 45.591798 63.274956 74.056045 2.466652
a 65.471894
b 19.137274
c 31.680635
d 41.659808
Name: one, dtype: float64
a b c d
one 65.471894 19.137274 31.680635 41.659808
three 54.930986 68.232707 17.215544 70.765401
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
布尔型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df >50 # d1为布尔型索引 print(d1) print("") print(df[d1]) # df根据d1 只返回True的值 False的值对应为NaN print("")
a b c d
one 91.503673 74.080822 85.274682 80.788609
two 49.670055 42.221393 36.674490 69.272958
three 78.349843 68.090150 22.326223 93.984369
four 79.057146 77.687246 32.304265 0.567816
a b c d
one True True True True
two False False False True
three True True False True
four True True False False
a b c d
one 91.503673 74.080822 85.274682 80.788609
two NaN NaN NaN 69.272958
three 78.349843 68.090150 NaN 93.984369
four 79.057146 77.687246 NaN NaN
选取某一列作为布尔型索引 返回True所在行的所有列 注意: 不能选取多列作为布尔型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d2 = df["b"] > 50 print(d2) print("") print(df[d2])
a b c d
one 27 18 47 61
two 26 35 16 78
three 80 98 94 41
four 85 3 47 90
one False
two False
three True
four False
Name: b, dtype: bool
a b c d
three 80 98 94 41
选取多列作为布尔型索引 返回True所对应的值 False对应为NaN 没有的列全部填充为NaN
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d3 = df[["a", "c"]] > 50 print(d3) print("") print(df[d3])
a b c d
one 49 82 32 39
two 78 2 24 84
three 6 84 84 69
four 21 89 16 77
a c
one False False
two True False
three False True
four False False
a b c d
one NaN NaN NaN NaN
two 78.0 NaN NaN NaN
three NaN NaN 84.0 NaN
four NaN NaN NaN NaN
多重索引
print(df)
a b c d one 49 82 32 39 two 78 2 24 84 three 6 84 84 69 four 21 89 16 77
print(df["a"].loc[["one", "three"]]) # 取列再取行
print("")
print(df[["a", "c"]].iloc[0:3])
one 49
three 6
Name: a, dtype: int64
a c
one 49 32
two 78 24
three 6 84
print(df.loc[["one", "three"]][["a", "c"]]) # 取行再取列
a c one 49 32 three 6 84
print(df > 50)
print("")
print(df[df>50])
print("")
print(df[df>50][["a","b"]])
a b c d
one False True False False
two True False False True
three False True True True
four False True False True
a b c d
one NaN 82.0 NaN NaN
two 78.0 NaN NaN 84.0
three NaN 84.0 84.0 69.0
four NaN 89.0 NaN 77.0
a b
one NaN 82.0
two 78.0 NaN
three NaN 84.0
four NaN 89.0
DataFrame基本技巧
import numpy as np import pandas as pd
arr = np.random.rand(16).reshape(8, 2)*10
# print(arr)
print("")
print(len(arr))
print("")
df = pd.DataFrame(arr, index=[chr(i) for i in range(97, 97+len(arr))], columns=["one", "two"])
print(df)
8
one two
a 2.129959 1.827002
b 8.631212 0.423903
c 6.262012 3.851107
d 6.890305 9.543065
e 6.883742 3.643955
f 2.740878 6.851490
g 6.242513 7.402237
h 9.226572 3.179664
查看数据
print(df)
print("")
print(df.head(2)) # 查看头部数据 默认查看5条
print("")
print(df.tail(3)) # 查看末尾数据 默认查看5条
one two
a 2.129959 1.827002
b 8.631212 0.423903
c 6.262012 3.851107
d 6.890305 9.543065
e 6.883742 3.643955
f 2.740878 6.851490
g 6.242513 7.402237
h 9.226572 3.179664
one two
a 2.129959 1.827002
b 8.631212 0.423903
one two
f 2.740878 6.851490
g 6.242513 7.402237
h 9.226572 3.179664
转置
print(df)
one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
print(df.T)
a b c d e f g \
one 2.129959 8.631212 6.262012 6.890305 6.883742 2.740878 6.242513
two 1.827002 0.423903 3.851107 9.543065 3.643955 6.851490 7.402237
h
one 9.226572
two 3.179664
添加与修改
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") df.loc["five"] = 100 # 增加一行 print(df) print("") df["e"] = 10 # 增加一列 print(df) print("") df["e"] = 101 # 修改一列 print(df) print("") df.loc["five"] = 111 # 修改一行 print(df) print("")
a b c d
one 0.708481 0.285426 0.355058 0.990070
two 0.199559 0.733047 0.322982 0.791169
three 0.198043 0.801163 0.356082 0.857501
four 0.430182 0.020549 0.896011 0.503088
a b c d
one 0.708481 0.285426 0.355058 0.990070
two 0.199559 0.733047 0.322982 0.791169
three 0.198043 0.801163 0.356082 0.857501
four 0.430182 0.020549 0.896011 0.503088
five 100.000000 100.000000 100.000000 100.000000
a b c d e
one 0.708481 0.285426 0.355058 0.990070 10
two 0.199559 0.733047 0.322982 0.791169 10
three 0.198043 0.801163 0.356082 0.857501 10
four 0.430182 0.020549 0.896011 0.503088 10
five 100.000000 100.000000 100.000000 100.000000 10
a b c d e
one 0.708481 0.285426 0.355058 0.990070 101
two 0.199559 0.733047 0.322982 0.791169 101
three 0.198043 0.801163 0.356082 0.857501 101
four 0.430182 0.020549 0.896011 0.503088 101
five 100.000000 100.000000 100.000000 100.000000 101
a b c d e
one 0.708481 0.285426 0.355058 0.990070 101
two 0.199559 0.733047 0.322982 0.791169 101
three 0.198043 0.801163 0.356082 0.857501 101
four 0.430182 0.020549 0.896011 0.503088 101
five 111.000000 111.000000 111.000000 111.000000 111
删除 del(删除行)/drop(删除列 指定axis=1删除行)
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") del df["a"] # 删除列 改变原数组 print(df)
a b c d
one 0.339979 0.577661 0.108308 0.482164
two 0.374043 0.102067 0.660970 0.786986
three 0.384832 0.076563 0.529472 0.358780
four 0.938592 0.852895 0.466709 0.938307
b c d
one 0.577661 0.108308 0.482164
two 0.102067 0.660970 0.786986
three 0.076563 0.529472 0.358780
four 0.852895 0.466709 0.938307
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df.drop("one") # 删除行 并返回新的数组 不改变原数组 print(d1) print("") print(df)
a b c d
one 0.205438 0.324132 0.401131 0.368300
two 0.471426 0.671785 0.837956 0.097416
three 0.888816 0.451950 0.137032 0.568844
four 0.524813 0.448306 0.875787 0.479477
a b c d
two 0.471426 0.671785 0.837956 0.097416
three 0.888816 0.451950 0.137032 0.568844
four 0.524813 0.448306 0.875787 0.479477
a b c d
one 0.205438 0.324132 0.401131 0.368300
two 0.471426 0.671785 0.837956 0.097416
three 0.888816 0.451950 0.137032 0.568844
four 0.524813 0.448306 0.875787 0.479477
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d2 = df.drop("a", axis=1) # 删除列 返回新的数组 不会改变原数组 print(d2) print("") print(df)
a b c d
one 0.939552 0.613218 0.357056 0.534264
two 0.110583 0.602123 0.990186 0.149132
three 0.756016 0.897848 0.176100 0.204789
four 0.655573 0.819009 0.094322 0.656406
b c d
one 0.613218 0.357056 0.534264
two 0.602123 0.990186 0.149132
three 0.897848 0.176100 0.204789
four 0.819009 0.094322 0.656406
a b c d
one 0.939552 0.613218 0.357056 0.534264
two 0.110583 0.602123 0.990186 0.149132
three 0.756016 0.897848 0.176100 0.204789
four 0.655573 0.819009 0.094322 0.656406
排序
根据指定列的列值排序 同时列值所在的行也会跟着移动 .sort_values(['列'])
# 单列 df = pd.DataFrame(np.random.rand(16).reshape(4,4), columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_values(['a'])) # 默认升序 print("") print(df.sort_values(['a'], ascending=False)) # 降序
a b c d
0 0.616386 0.416094 0.072445 0.140167
1 0.263227 0.079205 0.520708 0.866316
2 0.665673 0.836688 0.733966 0.310229
3 0.405777 0.090530 0.991211 0.712312
a b c d
1 0.263227 0.079205 0.520708 0.866316
3 0.405777 0.090530 0.991211 0.712312
0 0.616386 0.416094 0.072445 0.140167
2 0.665673 0.836688 0.733966 0.310229
a b c d
2 0.665673 0.836688 0.733966 0.310229
0 0.616386 0.416094 0.072445 0.140167
3 0.405777 0.090530 0.991211 0.712312
1 0.263227 0.079205 0.520708 0.866316
根据索引排序 .sort_index()
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=[2,1,3,0], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 默认升序 print("") print(df.sort_index(ascending=False)) # 降序
a b c d
2 0.669311 0.118176 0.635512 0.248388
1 0.752321 0.935779 0.572554 0.274019
3 0.701334 0.354684 0.592998 0.402686
0 0.548317 0.966295 0.191219 0.307908
a b c d
0 0.548317 0.966295 0.191219 0.307908
1 0.752321 0.935779 0.572554 0.274019
2 0.669311 0.118176 0.635512 0.248388
3 0.701334 0.354684 0.592998 0.402686
a b c d
3 0.701334 0.354684 0.592998 0.402686
2 0.669311 0.118176 0.635512 0.248388
1 0.752321 0.935779 0.572554 0.274019
0 0.548317 0.966295 0.191219 0.307908
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["x", "z", "y", "t"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根据字母顺序表排序
a b c d
x 0.717421 0.206383 0.757656 0.720580
z 0.969988 0.551812 0.210200 0.083031
y 0.956637 0.759216 0.350744 0.335287
t 0.846718 0.207411 0.936231 0.891330
a b c d
t 0.846718 0.207411 0.936231 0.891330
x 0.717421 0.206383 0.757656 0.720580
y 0.956637 0.759216 0.350744 0.335287
z 0.969988 0.551812 0.210200 0.083031
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["three", "one", "four", "two"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根据单词首字母排序
a b c d
three 0.173818 0.902347 0.106037 0.303450
one 0.591793 0.526785 0.101916 0.884698
four 0.685250 0.364044 0.932338 0.668774
two 0.240763 0.260322 0.722891 0.634825
a b c d
four 0.685250 0.364044 0.932338 0.668774
one 0.591793 0.526785 0.101916 0.884698
three 0.173818 0.902347 0.106037 0.303450
two 0.240763 0.260322 0.722891 0.634825
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12