
刚刚接触pandas的朋友,想了解数据结构,就一定要认识DataFrame,接下来给大家详细介绍!
import numpy as np import pandas as pd
data = {"name": ["Jack", "Tom", "LiSa"], "age": [20, 21, 18], "city": ["BeiJing", "TianJin", "ShenZhen"]} print(data) print("") frame = pd.DataFrame(data) # 创建DataFrame print(frame) print("") print(frame.index) # 查看行索引 print("") print(frame.columns) # 查看列索引 print("") print(frame.values) # 查看值
{'name': ['Jack', 'Tom', 'LiSa'], 'age': [20, 21, 18], 'city': ['BeiJing', 'TianJin', 'ShenZhen']} age city name 0 20 BeiJing Jack 1 21 TianJin Tom 2 18 ShenZhen LiSa RangeIndex(start=0, stop=3, step=1) Index(['age', 'city', 'name'], dtype='object') [[20 'BeiJing' 'Jack'] [21 'TianJin' 'Tom'] [18 'ShenZhen' 'LiSa']]
方法一: 由字典创建 字典的key是列索引值可以是
1.列表
2.ndarray
3.Series
# 值是ndarray 注意: 用ndarray创建DataFrame值的个数必须相同 否则报错 data2 = {"one": np.random.rand(3), "two": np.random.rand(3) } print(data2) print("") print(pd.DataFrame(data2))
{'one': array([ 0.60720023, 0.30838024, 0.30678266]), 'two': array([ 0.21368784, 0.03797809, 0.41698718])} one two 0 0.607200 0.213688 1 0.308380 0.037978 2 0.306783 0.416987
# 值是Series--带有标签的一维数组 注意: 用Series创建DataFrame值的个数可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639 1 0.921641 2 0.898810 3 0.933510 dtype: float64, 'two': 0 0.132789 1 0.099904 2 0.723495 3 0.719173 4 0.477456 dtype: float64} one two 0 0.217639 0.132789 1 0.921641 0.099904 2 0.898810 0.723495 3 0.933510 0.719173 4 NaN 0.477456
# 值是Series--带有标签的一维数组 注意: 用Series创建DataFrame值的个数可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639 1 0.921641 2 0.898810 3 0.933510 dtype: float64, 'two': 0 0.132789 1 0.099904 2 0.723495 3 0.719173 4 0.477456 dtype: float64} one two 0 0.217639 0.132789 1 0.921641 0.099904 2 0.898810 0.723495 3 0.933510 0.719173 4 NaN 0.477456
方法二: 通过二维数组直接创建
data = [{"one": 1, "two": 2}, {"one": 5, "two": 10, "three": 15}] # 每一个字典在DataFrame里就是一行数据 print(data) print("") df1 = pd.DataFrame(data) print(df1) print("") df2 = pd.DataFrame(data, index=list("ab"), columns=["one", "two", "three", "four"]) print(df2)
[{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 15}] one three two 0 1 NaN 2 1 5 15.0 10 one two three four a 1 2 NaN NaN b 5 10 15.0 NaN
方法三: 由字典组成的列表创建 DataFrame
# columns为字典的key index为子字典的key data = {"Jack": {"age":1, "country":"China", "sex":"man"}, "LiSa": {"age":18, "country":"America", "sex":"women"}, "Tom": {"age":20, "country":"English"}} df1 = pd.DataFrame(data) print(df1) print("") # 注意: 这里的index并不能给子字典的key(行索引)重新命名 但可以给子字典的key重新排序 若出现原数组没有的index 那么就填充NaN值 df2 = pd.DataFrame(data, index=["sex", "age", "country"]) print(df2) print("") df3 = pd.DataFrame(data, index=list("abc")) print(df3) print("") # columns 给列索引重新排序 若出现原数组没有的列索引填充NaN值 df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"]) print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
方法四: 由字典组成的字典
# columns为字典的key index为子字典的key data = {"Jack": {"age":1, "country":"China", "sex":"man"}, "LiSa": {"age":18, "country":"America", "sex":"women"}, "Tom": {"age":20, "country":"English"}} df1 = pd.DataFrame(data) print(df1) print("") # 注意: 这里的index并不能给子字典的key(行索引)重新命名 但可以给子字典的key重新排序 若出现原数组没有的index 那么就填充NaN值 df2 = pd.DataFrame(data, index=["sex", "age", "country"]) print(df2) print("") df3 = pd.DataFrame(data, index=list("abc")) print(df3) print("") # columns 给列索引重新排序 若出现原数组没有的列索引填充NaN值 df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"]) print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
选择行与列
选择列 直接用df["列标签"]
df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100, index = ["one", "two", "three"], columns = ["a", "b", "c", "d"]) print(df) print("") print(df["a"], " ", type(df["a"])) # 取一列 print("") print(df[["a", "c"]], " ", type(df[["a", "c"]])) # 取多列
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 one 92.905464 two 91.107357 three 3.152801 Name: a, dtype: float64pandas.core.series.series'=""> a c one 92.905464 19.518051 two 91.107357 4.913662 three 3.152801 14.030304 pandas.core.frame.dataframe'="">
选择行不能通过标签索引 df["one"] 来选择行 要用 df.loc["one"], loc就是针对行来操作的
print(df) print("") print(df.loc["one"], " ", type(df.loc["one"])) # 取一行 print("") print(df.loc[["one", "three"]], " ", type(df.loc[["one", "three"]])) # 取不连续的多行 print("")
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 a 92.905464 b 11.630358 c 19.518051 d 77.417377 Name: one, dtype: float64pandas.core.series.series'=""> a b c d one 92.905464 11.630358 19.518051 77.417377 three 3.152801 42.324671 14.030304 22.138608 pandas.core.frame.dataframe'="">
loc支持切片索引--针对行 并包含末端 df.loc["one": "three"]
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.loc["one": "three"]) print("") print(df[: 3]) # 切片表示取连续的多行(尽量不用 免得混淆)
a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401 four 45.591798 63.274956 74.056045 2.466652 a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401 a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401
iloc也是对行来操作的 只不过把行标签改成了行索引 并且是不包含末端的
print(df) print("") print(df.iloc[0]) # 取一行 print("") print(df.iloc[[0,2]]) # 取不连续的多行 print("") print(df.iloc[0:3]) # 不包含末端
a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401 four 45.591798 63.274956 74.056045 2.466652 a 65.471894 b 19.137274 c 31.680635 d 41.659808 Name: one, dtype: float64 a b c d one 65.471894 19.137274 31.680635 41.659808 three 54.930986 68.232707 17.215544 70.765401 a b c d one 65.471894 19.137274 31.680635 41.659808 two 31.570587 45.575849 37.739644 5.140845 three 54.930986 68.232707 17.215544 70.765401
布尔型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df >50 # d1为布尔型索引 print(d1) print("") print(df[d1]) # df根据d1 只返回True的值 False的值对应为NaN print("")
a b c d one 91.503673 74.080822 85.274682 80.788609 two 49.670055 42.221393 36.674490 69.272958 three 78.349843 68.090150 22.326223 93.984369 four 79.057146 77.687246 32.304265 0.567816 a b c d one True True True True two False False False True three True True False True four True True False False a b c d one 91.503673 74.080822 85.274682 80.788609 two NaN NaN NaN 69.272958 three 78.349843 68.090150 NaN 93.984369 four 79.057146 77.687246 NaN NaN
选取某一列作为布尔型索引 返回True所在行的所有列 注意: 不能选取多列作为布尔型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d2 = df["b"] > 50 print(d2) print("") print(df[d2])
a b c d one 27 18 47 61 two 26 35 16 78 three 80 98 94 41 four 85 3 47 90 one False two False three True four False Name: b, dtype: bool a b c d three 80 98 94 41
选取多列作为布尔型索引 返回True所对应的值 False对应为NaN 没有的列全部填充为NaN
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d3 = df[["a", "c"]] > 50 print(d3) print("") print(df[d3])
a b c d one 49 82 32 39 two 78 2 24 84 three 6 84 84 69 four 21 89 16 77 a c one False False two True False three False True four False False a b c d one NaN NaN NaN NaN two 78.0 NaN NaN NaN three NaN NaN 84.0 NaN four NaN NaN NaN NaN
多重索引
print(df)
a b c d one 49 82 32 39 two 78 2 24 84 three 6 84 84 69 four 21 89 16 77
print(df["a"].loc[["one", "three"]]) # 取列再取行 print("") print(df[["a", "c"]].iloc[0:3])
one 49 three 6 Name: a, dtype: int64 a c one 49 32 two 78 24 three 6 84
print(df.loc[["one", "three"]][["a", "c"]]) # 取行再取列
a c one 49 32 three 6 84
print(df > 50) print("") print(df[df>50]) print("") print(df[df>50][["a","b"]])
a b c d one False True False False two True False False True three False True True True four False True False True a b c d one NaN 82.0 NaN NaN two 78.0 NaN NaN 84.0 three NaN 84.0 84.0 69.0 four NaN 89.0 NaN 77.0 a b one NaN 82.0 two 78.0 NaN three NaN 84.0 four NaN 89.0
DataFrame基本技巧
import numpy as np import pandas as pd
arr = np.random.rand(16).reshape(8, 2)*10 # print(arr) print("") print(len(arr)) print("") df = pd.DataFrame(arr, index=[chr(i) for i in range(97, 97+len(arr))], columns=["one", "two"]) print(df)
8 one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
查看数据
print(df) print("") print(df.head(2)) # 查看头部数据 默认查看5条 print("") print(df.tail(3)) # 查看末尾数据 默认查看5条
one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664 one two a 2.129959 1.827002 b 8.631212 0.423903 one two f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
转置
print(df)
one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
print(df.T)
a b c d e f g \ one 2.129959 8.631212 6.262012 6.890305 6.883742 2.740878 6.242513 two 1.827002 0.423903 3.851107 9.543065 3.643955 6.851490 7.402237 h one 9.226572 two 3.179664
添加与修改
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") df.loc["five"] = 100 # 增加一行 print(df) print("") df["e"] = 10 # 增加一列 print(df) print("") df["e"] = 101 # 修改一列 print(df) print("") df.loc["five"] = 111 # 修改一行 print(df) print("")
a b c d one 0.708481 0.285426 0.355058 0.990070 two 0.199559 0.733047 0.322982 0.791169 three 0.198043 0.801163 0.356082 0.857501 four 0.430182 0.020549 0.896011 0.503088 a b c d one 0.708481 0.285426 0.355058 0.990070 two 0.199559 0.733047 0.322982 0.791169 three 0.198043 0.801163 0.356082 0.857501 four 0.430182 0.020549 0.896011 0.503088 five 100.000000 100.000000 100.000000 100.000000 a b c d e one 0.708481 0.285426 0.355058 0.990070 10 two 0.199559 0.733047 0.322982 0.791169 10 three 0.198043 0.801163 0.356082 0.857501 10 four 0.430182 0.020549 0.896011 0.503088 10 five 100.000000 100.000000 100.000000 100.000000 10 a b c d e one 0.708481 0.285426 0.355058 0.990070 101 two 0.199559 0.733047 0.322982 0.791169 101 three 0.198043 0.801163 0.356082 0.857501 101 four 0.430182 0.020549 0.896011 0.503088 101 five 100.000000 100.000000 100.000000 100.000000 101 a b c d e one 0.708481 0.285426 0.355058 0.990070 101 two 0.199559 0.733047 0.322982 0.791169 101 three 0.198043 0.801163 0.356082 0.857501 101 four 0.430182 0.020549 0.896011 0.503088 101 five 111.000000 111.000000 111.000000 111.000000 111
删除 del(删除行)/drop(删除列 指定axis=1删除行)
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") del df["a"] # 删除列 改变原数组 print(df)
a b c d one 0.339979 0.577661 0.108308 0.482164 two 0.374043 0.102067 0.660970 0.786986 three 0.384832 0.076563 0.529472 0.358780 four 0.938592 0.852895 0.466709 0.938307 b c d one 0.577661 0.108308 0.482164 two 0.102067 0.660970 0.786986 three 0.076563 0.529472 0.358780 four 0.852895 0.466709 0.938307
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df.drop("one") # 删除行 并返回新的数组 不改变原数组 print(d1) print("") print(df)
a b c d one 0.205438 0.324132 0.401131 0.368300 two 0.471426 0.671785 0.837956 0.097416 three 0.888816 0.451950 0.137032 0.568844 four 0.524813 0.448306 0.875787 0.479477 a b c d two 0.471426 0.671785 0.837956 0.097416 three 0.888816 0.451950 0.137032 0.568844 four 0.524813 0.448306 0.875787 0.479477 a b c d one 0.205438 0.324132 0.401131 0.368300 two 0.471426 0.671785 0.837956 0.097416 three 0.888816 0.451950 0.137032 0.568844 four 0.524813 0.448306 0.875787 0.479477
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d2 = df.drop("a", axis=1) # 删除列 返回新的数组 不会改变原数组 print(d2) print("") print(df)
a b c d one 0.939552 0.613218 0.357056 0.534264 two 0.110583 0.602123 0.990186 0.149132 three 0.756016 0.897848 0.176100 0.204789 four 0.655573 0.819009 0.094322 0.656406 b c d one 0.613218 0.357056 0.534264 two 0.602123 0.990186 0.149132 three 0.897848 0.176100 0.204789 four 0.819009 0.094322 0.656406 a b c d one 0.939552 0.613218 0.357056 0.534264 two 0.110583 0.602123 0.990186 0.149132 three 0.756016 0.897848 0.176100 0.204789 four 0.655573 0.819009 0.094322 0.656406
排序
根据指定列的列值排序 同时列值所在的行也会跟着移动 .sort_values(['列'])
# 单列 df = pd.DataFrame(np.random.rand(16).reshape(4,4), columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_values(['a'])) # 默认升序 print("") print(df.sort_values(['a'], ascending=False)) # 降序
a b c d 0 0.616386 0.416094 0.072445 0.140167 1 0.263227 0.079205 0.520708 0.866316 2 0.665673 0.836688 0.733966 0.310229 3 0.405777 0.090530 0.991211 0.712312 a b c d 1 0.263227 0.079205 0.520708 0.866316 3 0.405777 0.090530 0.991211 0.712312 0 0.616386 0.416094 0.072445 0.140167 2 0.665673 0.836688 0.733966 0.310229 a b c d 2 0.665673 0.836688 0.733966 0.310229 0 0.616386 0.416094 0.072445 0.140167 3 0.405777 0.090530 0.991211 0.712312 1 0.263227 0.079205 0.520708 0.866316
根据索引排序 .sort_index()
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=[2,1,3,0], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 默认升序 print("") print(df.sort_index(ascending=False)) # 降序
a b c d 2 0.669311 0.118176 0.635512 0.248388 1 0.752321 0.935779 0.572554 0.274019 3 0.701334 0.354684 0.592998 0.402686 0 0.548317 0.966295 0.191219 0.307908 a b c d 0 0.548317 0.966295 0.191219 0.307908 1 0.752321 0.935779 0.572554 0.274019 2 0.669311 0.118176 0.635512 0.248388 3 0.701334 0.354684 0.592998 0.402686 a b c d 3 0.701334 0.354684 0.592998 0.402686 2 0.669311 0.118176 0.635512 0.248388 1 0.752321 0.935779 0.572554 0.274019 0 0.548317 0.966295 0.191219 0.307908
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["x", "z", "y", "t"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根据字母顺序表排序
a b c d x 0.717421 0.206383 0.757656 0.720580 z 0.969988 0.551812 0.210200 0.083031 y 0.956637 0.759216 0.350744 0.335287 t 0.846718 0.207411 0.936231 0.891330 a b c d t 0.846718 0.207411 0.936231 0.891330 x 0.717421 0.206383 0.757656 0.720580 y 0.956637 0.759216 0.350744 0.335287 z 0.969988 0.551812 0.210200 0.083031
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["three", "one", "four", "two"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根据单词首字母排序
a b c d three 0.173818 0.902347 0.106037 0.303450 one 0.591793 0.526785 0.101916 0.884698 four 0.685250 0.364044 0.932338 0.668774 two 0.240763 0.260322 0.722891 0.634825 a b c d four 0.685250 0.364044 0.932338 0.668774 one 0.591793 0.526785 0.101916 0.884698 three 0.173818 0.902347 0.106037 0.303450 two 0.240763 0.260322 0.722891 0.634825
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27