
作者 | CDA数据分析师
像Keras中的机器学习和深度学习模型一样,要求所有输入和输出变量均为数字。
这意味着,如果你的数据包含分类数据,则必须先将其编码为数字,然后才能拟合和评估模型。
两种最流行的技术是整数编码和一种热编码,尽管一种称为学习嵌入的较新技术可能在这两种方法之间提供了有用的中间立场。
在本教程中,您将发现在Keras中开发神经网络模型时如何编码分类数据。
完成本教程后,您将知道:
让我们开始吧。
本教程分为五个部分。分别是:
类别变量是其值采用标签值的变量。
例如,变量可以是“ color ”,并且可以取值“ red ”,“ green ”和“ blue”。
有时,分类数据可能在类别之间具有排序的关系,例如“ 第一 ”,“ 第二 ”和“ 第三”。这种类型的分类数据称为序数,并且其他排序信息可能很有用。
这意味着必须先将分类数据编码为数字,然后才能使用它来拟合和评估模型。
有多种编码分类变量以进行建模的方法,尽管最常见的三种方法如下:
我们将仔细研究如何使用以下每种方法对分类数据进行编码,以在Keras中训练深度学习神经网络。
作为本教程的基础,我们将使用自1980年代以来在机器学习中广泛研究的所谓“ 乳腺癌 ”数据集。
该数据集将乳腺癌患者数据分类为癌症复发或无复发。有286个示例和9个输入变量。这是一个二进制分类问题。
该数据集上合理的分类准确性得分在68%到73%之间。我们将针对该区域,但请注意,本教程中的模型并未经过优化:它们旨在演示编码方案。
查看数据,我们可以看到所有九个输入变量都是分类的。
具体来说,所有变量都用引号引起来;有些是序数,有些不是。
'40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events' '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events' '50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events' '40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events' '40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events'
我们可以使用Pandas库将该数据集加载到内存中。
# load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values
加载后,我们可以将列分为输入(X)和输出(y)进行建模。
# split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1]
最后,我们可以将输入数据中的所有字段都强制为字符串,以防万一熊猫试图将某些字段自动映射为数字(确实如此)。
我们还可以将输出变量整形为一列(例如2D形状)。
# format all fields as string X = X.astype(str) # reshape target to be a 2d array y = y.reshape((len(y), 1))
我们可以将所有这些结合到一个有用的功能中,以备后用。
# load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) # reshape target to be a 2d array y = y.reshape((len(y), 1)) return X, y
加载后,我们可以将数据分为训练集和测试集,以便我们可以拟合和评估深度学习模型。
我们将使用scikit-learn中的train_test_split()函数,并将67%的数据用于训练,将33%的数据用于测试。
# load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
将所有这些元素结合在一起,下面列出了加载,拆分和汇总原始分类数据集的完整示例。
# load and summarize the dataset from pandas import read_csv from sklearn.model_selection import train_test_split # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) # reshape target to be a 2d array y = y.reshape((len(y), 1)) return X, y # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # summarize print('Train', X_train.shape, y_train.shape) print('Test', X_test.shape, y_test.shape)
运行示例将报告训练和测试集的输入和输出元素的大小。
我们可以看到,我们有191个示例用于培训,而95个用于测试。
Train (191, 9) (191, 1) Test (95, 9) (95, 1)
既然我们已经熟悉了数据集,那么让我们看一下如何对它进行编码以进行建模。
顺序编码涉及将每个唯一标签映射到整数值。
这样,有时将其简称为整数编码。
这种类型的编码实际上仅在类别之间存在已知关系时才适用。
数据集中的某些变量确实存在这种关系,理想情况下,在准备数据时应利用此关系。
在这种情况下,我们将忽略任何可能存在的序数关系,并假定所有变量都是类别变量。至少将序数编码用作其他编码方案的参考点仍然会有所帮助。
我们可以使用scikit-learn的scikit-learn将每个变量编码为整数。这是一个灵活的类,并且允许将类别的顺序指定为参数(如果已知这样的顺序)。
注意:我将作为练习来更新以下示例,以尝试为具有自然顺序的变量指定顺序,并查看其是否对模型性能产生影响。
对变量进行编码的最佳实践是使编码适合训练数据集,然后将其应用于训练和测试数据集。
下面的函数prepare_inputs(),获取训练和测试集的输入数据,并使用序数编码对其进行编码。
# prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc
我们还需要准备目标变量。
这是一个二进制分类问题,因此我们需要将两个类标签映射到0和1。
这是一种序数编码,scikit-learn提供了为此专门设计的LabelEncoder类。尽管LabelEncoder设计用于编码单个变量,但我们可以轻松使用OrdinalEncoder并获得相同的结果。
在()prepare_targets整数编码的训练集和测试集的输出数据。
# prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc
我们可以调用这些函数来准备我们的数据。
# prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
现在我们可以定义一个神经网络模型。
在所有这些示例中,我们将使用相同的通用模型。具体来说,是一种多层感知器(MLP)神经网络,其中的一个隐藏层具有10个节点,而输出层中的一个节点用于进行二进制分类。
无需赘述,下面的代码定义了模型,将其拟合在训练数据集上,然后在测试数据集上对其进行了评估。
# define the model model = Sequential() model.add(Dense(10, input_dim=X_train_enc.shape[1], activation='relu', kernel_initializer='he_normal')) model.add(Dense(1, activation='sigmoid')) # compile the keras model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # fit the keras model on the dataset model.fit(X_train_enc, y_train_enc, epochs=100, batch_size=16, verbose=2) # evaluate the keras model _, accuracy = model.evaluate(X_test_enc, y_test_enc, verbose=0) print('Accuracy: %.2f' % (accuracy*100))
综合所有这些,下面列出了使用序数编码准备数据并拟合和评估数据上的神经网络的完整示例。
# example of ordinal encoding for a neural network from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from keras.models import Sequential from keras.layers import Dense # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) # reshape target to be a 2d array y = y.reshape((len(y), 1)) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # define the model model = Sequential() model.add(Dense(10, input_dim=X_train_enc.shape[1], activation='relu', kernel_initializer='he_normal')) model.add(Dense(1, activation='sigmoid')) # compile the keras model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # fit the keras model on the dataset model.fit(X_train_enc, y_train_enc, epochs=100, batch_size=16, verbose=2) # evaluate the keras model _, accuracy = model.evaluate(X_test_enc, y_test_enc, verbose=0) print('Accuracy: %.2f' % (accuracy*100))
在任何现代硬件(无需GPU)上运行示例,只需几秒钟即可使模型适应模型。
在每个训练时期结束时报告模型的损失和准确性,最后报告测试数据集上模型的准确性。
鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到该模型在测试数据集上达到了约70%的精度。
不错,因为只有某些输入变量存在序数关系,对于某些输入变量才存在序数关系,因此在编码中不遵循序数关系。
... Epoch 95/100 - 0s - loss: 0.5349 - acc: 0.7696 Epoch 96/100 - 0s - loss: 0.5330 - acc: 0.7539 Epoch 97/100 - 0s - loss: 0.5316 - acc: 0.7592 Epoch 98/100 - 0s - loss: 0.5302 - acc: 0.7696 Epoch 99/100 - 0s - loss: 0.5291 - acc: 0.7644 Epoch 100/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27