
作者 | Jason Brownlee编译 | CDA数据分析师
特征选择是在开发预测模型时减少输入变量数量的过程。
希望减少输入变量的数量,以减少建模的计算成本,并且在某些情况下,还需要改善模型的性能。
基于特征的特征选择方法包括使用统计信息评估每个输入变量和目标变量之间的关系,并选择与目标变量关系最密切的那些输入变量。尽管统计方法的选择取决于输入和输出变量的数据类型,但是这些方法可以快速有效。
这样,当执行基于过滤器的特征选择时,对于机器学习从业者来说,为数据集选择适当的统计量度可能是具有挑战性的。
在本文中,您将发现如何为统计数据和分类数据选择统计度量,以进行基于过滤器的特征选择。
阅读这篇文章后,您将知道:
本教程分为三个部分:他们是:
特征选择方法旨在将输入变量的数量减少到被认为对模型最有用的那些变量,以预测目标变量。
一些预测性建模问题包含大量变量,这些变量可能会减慢模型的开发和训练速度,并需要大量的系统内存。此外,当包含与目标变量无关的输入变量时,某些模型的性能可能会降低。
特征选择算法有两种主要类型:包装器方法和过滤器方法。
包装器特征选择方法会创建许多具有不同输入特征子集的模型,并根据性能指标选择那些导致最佳性能模型的特征。这些方法与变量类型无关,尽管它们在计算上可能很昂贵。RFE是包装功能选择方法的一个很好的例子。
包装器方法使用添加和/或删除预测变量的过程来评估多个模型,以找到使模型性能最大化的最佳组合。
—第490页,应用预测建模,2013年。
过滤器特征选择方法使用统计技术来评估每个输入变量和目标变量之间的关系,这些分数将用作选择(过滤)将在模型中使用的那些输入变量的基础。
过滤器方法在预测模型之外评估预测变量的相关性,然后仅对通过某些标准的预测变量进行建模。
—第490页,应用预测建模,2013年。
通常在输入和输出变量之间使用相关类型统计量度作为过滤器特征选择的基础。这样,统计量度的选择高度依赖于可变数据类型。
常见的数据类型包括数字(例如高度)和类别(例如标签),但是每种数据类型都可以进一步细分,例如数字变量的整数和浮点数,类别变量的布尔值,有序数或标称值。
常见的输入变量数据类型:
对变量的数据类型了解得越多,就越容易为基于过滤器的特征选择方法选择适当的统计量度。
在下一部分中,我们将回顾一些统计量度,这些统计量度可用于具有不同输入和输出变量数据类型的基于过滤器的特征选择。
在本节中,我们将考虑两大类变量类型:数字和类别;同样,要考虑的两个主要变量组:输入和输出。
输入变量是作为模型输入提供的变量。在特征选择中,我们希望减小这些变量的大小。输出变量是模型要预测的变量,通常称为响应变量。
响应变量的类型通常指示正在执行的预测建模问题的类型。例如,数字输出变量指示回归预测建模问题,而分类输出变量指示分类预测建模问题。
通常在基于过滤器的特征选择中使用的统计量度是与目标变量一次计算一个输入变量。因此,它们被称为单变量统计量度。这可能意味着在过滤过程中不会考虑输入变量之间的任何交互。
这些技术大多数都是单变量的,这意味着它们独立地评估每个预测变量。在这种情况下,相关预测变量的存在使选择重要但多余的预测变量成为可能。此问题的明显后果是选择了太多的预测变量,结果出现了共线性问题。
—第499页,应用预测建模,2013年。
使用此框架,让我们回顾一些可用于基于过滤器的特征选择的单变量统计量度。
这是带有数字输入变量的回归预测建模问题。
最常见的技术是使用相关系数,例如使用Pearson进行线性相关,或使用基于秩的方法进行非线性相关。
这是带有数字输入变量的分类预测建模问题。
这可能是最常见的分类问题示例,
同样,最常见的技术是基于相关的,尽管在这种情况下,它们必须考虑分类目标。
Kendall确实假定类别变量为序数。
这是带有分类输入变量的回归预测建模问题。
这是回归问题的一个奇怪示例(例如,您不会经常遇到它)。
不过,您可以使用相同的“ 数值输入,分类输出 ”方法(如上所述),但要相反。
这是带有分类输入变量的分类预测建模问题。
分类数据最常见的相关度量是卡方检验。您还可以使用信息论领域的互信息(信息获取)。
实际上,互信息是一种强大的方法,可能对分类数据和数字数据都有用,例如,与数据类型无关。
使用基于过滤器的功能选择时,本节提供了一些其他注意事项。
scikit-learn库提供了大多数有用的统计度量的实现。
例如:
此外,SciPy库提供了更多统计信息的实现,例如Kendall的tau(kendalltau)和Spearman的排名相关性(spearmanr)。
一旦针对具有目标的每个输入变量计算出统计信息,scikit-learn库还将提供许多不同的过滤方法。
两种比较流行的方法包括:
我经常自己使用SelectKBest。
考虑转换变量以访问不同的统计方法。
例如,您可以将分类变量转换为序数(即使不是序数),然后查看是否有任何有趣的结果。
您还可以使数值变量离散(例如,箱);尝试基于分类的度量。
一些统计度量假设变量的属性,例如Pearson假设假定观测值具有高斯概率分布并具有线性关系。您可以转换数据以满足测试的期望,然后不管期望如何都可以尝试测试并比较结果。
没有最佳功能选择方法。
就像没有最佳的输入变量集或最佳的机器学习算法一样。至少不是普遍的。
相反,您必须使用认真的系统实验来发现最适合您的特定问题的方法。
尝试通过不同的统计量度来选择适合不同特征子集的各种不同模型,并找出最适合您的特定问题的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27