京公网安备 11010802034615号
经营许可证编号:京B2-20210330
凝聚层次聚类说明
层次聚类可以分成凝聚(agglomerative,自底向上)和分裂(divisive,自顶向下)两种方法来构建聚类层次,但不管采用那种算法,算法都需要距离的相似性度量来判断对数据究竟是采取合并还是分裂处理。
凝聚层次聚类操作
采用层次聚类,将客户数据集分成不同的组,从github上下载数据:
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9下载
customer.csv文件
customer = read.csv("d:/R-TT/example/customer.csv")
head(customer,10)
ID Visit.Time Average.Expense Sex Age
1 1 3 5.7 0 10
2 2 5 14.5 0 27
3 3 16 33.5 0 32
4 4 5 15.9 0 30
5 5 16 24.9 0 23
6 6 3 12.0 0 15
7 7 12 28.5 0 33
8 8 14 18.8 0 27
9 9 6 23.8 0 16
10 10 3 5.3 0 11
检查数据集结构:
str(customer)
'data.frame': 60 obs. of 5 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Visit.Time : int 3 5 16 5 16 3 12 14 6 3 ...
$ Average.Expense: num 5.7 14.5 33.5 15.9 24.9 12 28.5 18.8 23.8 5.3 ...
$ Sex : int 0 0 0 0 0 0 0 0 0 0 ...
$ Age : int 10 27 32 30 23 15 33 27 16 11 ...
对客户数据进行归一化处理:
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:
一、min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
二、Z-score标准化方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

其中为所有样本数据的均值,为所有样本数据的标准差。
此处采用方法二
customer = scale(customer[,-1])
customer
Visit.Time Average.Expense Sex Age
[1,] -1.20219054 -1.35237652 -1.4566845 -1.23134396
[2,] -0.75693479 -0.30460718 -1.4566845 0.59951732
[3,] 1.69197187 1.95762206 -1.4566845 1.13800594
[4,] -0.75693479 -0.13791661 -1.4566845 0.92261049
[5,] 1.69197187 0.93366567 -1.4566845 0.16872643
[6,] -1.20219054 -0.60226893 -1.4566845 -0.69285535
[7,] 0.80146036 1.36229858 -1.4566845 1.24570366
[8,] 1.24671612 0.20737101 -1.4566845 0.59951732
[9,] -0.53430691 0.80269450 -1.4566845 -0.58515763
[10,] -1.20219054 -1.40000240 -1.4566845 -1.12364624
使用自底向上的聚类方法处理数据集:
hc = hclust(dist(customer,method = "euclidean"),method = "ward.D2")
> hc
Call:
hclust(d = dist(customer, method = "euclidean"), method = "ward.D2")
Cluster method : ward.D2
Distance : euclidean
Number of objects: 60
最后,调用plot函数绘制聚类树图
plot(hc,hang = -0.01,cex =0.7)

使用离差平方和绘制聚类树图
还可以使用最短距离法(single)来生成层次聚类并比较以下两者生成的聚类树图的差异:
hc2 = hclust(dist(customer),method = "single")
plot(hc2,hang = -0.01,cex = 0.7)

使用最短距离法绘制聚类树图
凝聚层次聚类原理
层次聚类是一种通过迭代来尝试建立层次聚类的方法,通常可以采用以下两种方式完成:
凝聚层次聚类
这是一个自底向上的聚类方法。算法开始时,每个观测样例都被划分到单独的簇中,算法计算得出每个簇之间的相似度(距离),并将两个相似度最高的簇合成一个簇,然后反复迭代,直到所有的数据都被划分到一个簇中。
分裂层次聚类
这是一种自顶向下的聚类算法,算法开始时,每个观测样例都被划分同一个簇中,然后算法开始将簇分裂成两个相异度最大的小簇,并反复迭代,直到每个观测值属于单独一个簇。
在执行层次聚类操作之前,我们需要确定两个簇之间的相似度到底有多大,通常我们会使用一些距离计算公式:
最短距离法(single linkage),计算每个簇之间的最短距离:
dist(c1,c2) = min dist(a,b)
最长距离法(complete linkage),计算每个簇中两点之间的最长距离:
dist(c1,c2) = max dist(a,b)
平均距离法(average linkage),计算每个簇中两点之间的平均距离:
最小方差法(ward),计算簇中每个点到合并后的簇中心的距离差的平方和。
调用plot函数绘制聚类图,样例的hang值小于0,因此聚类树将从底部显示标签,并使用cex将坐标轴上的标签字体大小缩小为正常的70%,此外,为了比较最小方差法和最短距离法在层次聚类上的差异,我们还绘制了使用最短距离法得到的聚类树图。
分裂层次聚类
调用diana函数执行分裂层次聚类
library(cluster)
dv = diana(customer,metric = "euclidean")
调用summary函数输出模型特征信
summary(dv)
如果想构建水平聚类树
library(magrittr)
dend = customer %>% dist %>% hclust %>% as.dendrogram
dend %>% plot(horiz = TRUE,main = "Horizontal Dendrogram")

水平聚类树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22