京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之读取Excel及csv数据
1、读取R内置数据 data()
data() #查看数据集列表
data(mtcars) #载入数据集
如用library()载入程序包后,可用data(package=”“)查看包内附带的数据集。
library(vcd)
data(package="vcd") #查看vcd包中的数据集
data(Arthritis,package = "vcd") #载入数据集Arthritis
2、键盘输入数据
a、调用文本编辑器edit()。
首先必须创建一个空的数据框或者矩阵,且数据框或者矩阵中的变量名与变量类型必须与最终数据集一致。下列代码创建了一个名为mydata的数据框,数据框里保存了姓名,英语成绩,数学成绩三个变量,且通过调用文本编辑器edit()可修改或增加变量。
mydata<-data.frame(name=character(0),English=numeric(0),Math=numeric(0)) #创建一个空的数据框
mydata<-edit(mydata)
mydata
程序运行结果如下:

可在此数据编辑器中直接输入数据,或者通过单击来修改变量名或者变量类型,也可以增加变量。
b、直接在程序中嵌入数据,代码如下:
> mydatatext<-"
+ name English Math
+ 张三 92 93
+ 李四 80 92
+ "
> mydata<-read.table(header=T,text=mydatatext)
> mydata
name English Math
1 张三 92 93
2 李四 80 92
3、导入带分隔符的文本文件(ASCII)
使用read.table()导入一个带分隔符的文本文件,其输出类型为数据框。语法如下:
read.table(file , header=F , sep=”” ,quote , row.names , col.names , na.strings=”NA” , colClasses , skip , stringsAsFactors=T, blank.lines.skip=T, strip.white=F, text,…)
下面使用read.table()来读取一个分隔符为逗号,名为“分数”的csv文件,代码如下:
>mydata<-read.table(header=T,file="C:\\Users\\mx\\Desktop\\分数.csv",sep=",") #路径中的单右斜杠“\”需换成双右斜杠“\\”或者单左斜杠“/”。文件名后一定要加上扩展名
> mydata
name English Math
1 张三 92 93
2 李四 80 92
与read.table()用法类似的函数还有read.csv(),read.delim()。
*
*4、读取Excel数据read.xlsx()
a、将其保存为csv格式,用前文所描述的方法读取
b、直接用read.xlsx()读取。读取前确保已安装“xlsxjars”,”rJava”,”xlsx”包,且第一次使用前需确保配置了Java环境。下载安装的Java的位数必须与电脑位数、R的位数一致。
语法: read.xlsx(file, n),其中n表示要读取的工作表序号。
如用read.xlsx()读取以上名为“分数”的.xlsx形式,代码如下:
> library(xlsxjars)
> library(rJava)
> library(xlsx)
> mydata<-read.xlsx("C:\\Users\\mx\\Desktop\\分数.xlsx",1,encoding="UTF-8") #encoding="UFT-8"调整中文字集符,防止表格中的中文读取时乱码
> mydata
name English Math
1 张三 92 93
2 李四 80 92
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07