
SAS信用评分之逻辑回归的变量选择
关于woe的转化,这一部在之前的这篇文章:sas批量输出变量woe值中已经写了,woe也只是简单的公式转化而已,所以在这系列中就不细究了哈。这次的文章我想来讲逻辑回归。你会说逻辑回归就是三个方法:backword stepword forward有什么好讲的。如果你这么说,你的模型就只能停留在机器给你什么结果就是什么结果,那就low了哈。
为什么这么说呢?是因为我发现譬如你输入了300个变量,你设定了sle和sls的显著性水平都是0.05,那么只要是满足“sle和sls的显著性水平都是0.05”的变量就会被筛选出来,这时候就有问题,输入的300个变量中,至少有30个变量是满足上面的显著性水平的条件的,那么你这30个变量难道都要用的模型中吗?
你说可以,你领导都会跟你说不可以,会过拟合,过拟合意味着什么,评分卡在AB两级的客户极少(因为需要满足的条件多),在cde级的客户很多,加入以前100个人来申请,是30个人可以通过的,但是现在你做了模型100个人中只有10个人能通过,那这10个人肯定好的啊。这样子逾期率是降低了,但是批核率也降低了,通过的人少了,老板就问你,你这是让公司怎么赚钱!!!。
那么这时候我们应该做什么,就是精减变量,让只用十几个变量达到30个变量的效果,当然这种30个变量的效果可能很好,但是我们尽量是做到用十几个变量达到30个变量的效果啦。譬如,30个变量达到的ks值是0.326,那么你13个变量可以达到0.316,那也足够拉。
那么现在先贴一个单独的proc logistic 过程。
Ods Output ParameterEstimates=aa ;
proc logistic data=test.RONG_ZX_total12_3 outest=bb ;
model APPL_STATUS_1(event="0")=
woe_N_a_nine_rate
woe_N_t_CREDIT_f
woe_N_ACCOUNT_CREDITCARD
woe_N_q_othree_cnt
woe_N_q_tlttwelve_cnt
woe_N_cq_cc_rate
woe_N_OPERATOR_num_S
woe_N_CREDOO_SCORE_o
woe_N_CALL_PAY_mrate
woe_n_g_MARITAL_P
woe_n_NAME_CITY
woe_n_industry_o
woe_n_EDUCATION
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class APPL_STATUS_1;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
这是我在建模中的一个例子。后面的proc npar1way是计算ks值的。
这里是我随便选了13个变量出来,然后跑了一下ks值,但是这里有个问题就是那我怎么知道这30个变量中到底哪13个,难道我要一直试嘛,这样子很浪费我的时间也。所以我一早上就在纠结这个问题,但是我又百度不到sas中怎么实现C2013随机数的产生。所以我在纠结中就想出以下这种方法,不过要是哪位大神指导C2013 怎么实现还是希望留言区指导,我可以继续学习。
那么接下来就贴下我的代码吧,代码就是以ks为衡量指标,希望找出一种组合的ks是比较高的。
%macro var_namelist(data=,coltype=,tarvar=,dsor=);
%let lib=%upcase(%scan(&data.,1,'.'));
%let dname=%upcase(%scan(&data.,2,'.'));
%global var_list var_num;
proc sql ;
create table &dsor. as
select name
from sashelp.VCOLUMN
where left(libname)="&lib." and left(memname)="&dname." and type="&coltype." and lowcase(name)^=lowcase("&tarvar.") ;
quit;
%mend;
%macro pub_survey(data,dvar,n,start,end,by);
proc datasets lib=work;
delete result_1;
run;
%do i=&start. %to &end. %by &by.;
%var_namelist(data=&data.,coltype=num,tarvar=&dvar.,dsor=aa);
proc surveyselect data=aa
out=bb
method =srs
n=&n.
seed =&i.;
run;
data _null_;
set bb;
call symput (compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put &var1.;
Ods Output ParameterEstimates=gg ;
proc logistic data=&data. outest=bb ;
model &Dvar. (event="0")=
&var1. &var2. &var3. &var4. &var5. &var6. &var7. &var8. &var9. &var10. &var11.
&var12. &var13.
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class &Dvar.;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data result;
set ks_1(keep=ks);
length value $500.;
value=compress("&var1."||","||"&var2."||","||"&var3."||","||"&var4."||","||"&var5."||","||"&var6."||","||"&var7."||","||"&var8."||","||"&var9."||","||"&var10."||","||"&var11."||","||"&var12."||","||"&var13.");
run;
Proc append base=result_1 data=result force;run;
%end ;
proc sort data=result_1;by ks;
run;
%mend;
老样子啦,说下这宏怎么用。宏都是我调试过,应该没错,就是你的原数据集,要只留下你要用来循环的变量以及因变量,别的你都不要哈,乖,听我话。
Data:填入的是原数据集;
Dvar:填入因变量
N:填入你想最终模型的个数,建议10-15个吧。
Start:这里填的是seed种子数,次种子出不来.avi哈。建议是4位数以上,不知道sas随机过程中seed的种子数的自行百度。
End:你要种子循环的尽头。尽量设大点,我是建议循环个1000 2000次最好啦。
By:种子循环的区间,就是你是每隔200个数取一个数还是20个数之间取一个数。譬如你设定start=1000,end=1500,by=100,那就是种子等于1000,1100,1200,1300,1400,1500这五个数。再强调一次,输入数据集值保留你要这筛选的变量以及因变量,其余的主键什么的,你别加进去哈。
好的,这时候我要上结果图了:
这就是结果图。Ks升序排序,可以看到我循环了三次,最好的是第三次,帅选的13个变量里面,ks可以达到0.301,变量value中就是达到ks值的13个变量。但这只是我循环三次的结果啦。我是建议最好循环个1000次2000次。你就下班的时候放着跑,明天上班来收成果就好了,上班时间盯着屏幕。是跑不完的。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27