
在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成为分析区域趋势、挖掘空间规律的重要工具。Power BI 作为功能强大的商业智能工具,为基于经纬度数据制作地图热力图提供了便捷且高效的解决方案。本文将详细介绍如何利用 Power BI,从经纬度数据准备到最终生成热力图的完整流程。
制作地图热力图的基础是高质量的经纬度数据,数据的准确性和规范性直接影响热力图的呈现效果。首先,需要确保数据集中包含明确的纬度(Latitude)和经度(Longitude)字段,且字段名称清晰易懂,方便在 Power BI 中识别和使用。
经纬度数据的格式也有严格要求。纬度的取值范围在 - 90 到 90 之间,北纬为正值,南纬为负值;经度的取值范围在 - 180 到 180 之间,东经为正值,西经为负值。数据集中的经纬度数值应采用十进制格式,避免使用度分秒格式,若原始数据为度分秒格式,需提前通过 Excel 等工具转换为十进制。例如,将 “30°30′N” 转换为 30.5 的纬度数值,将 “120°15′E” 转换为 120.25 的经度数值。
同时,要对经纬度数据进行清洗,检查是否存在缺失值、异常值。对于缺失的经纬度数据,可根据相关地址信息通过地图工具查询补充;对于明显超出取值范围的异常值,需核实数据来源并修正,确保数据的可靠性。
在 Power BI 中基于经纬度数据制作地图热力图,需按照以下步骤有序操作。
首先,将准备好的包含经纬度数据的数据集导入 Power BI。点击 “获取数据”,选择对应的数据源格式,如 Excel、CSV 等,按照提示完成数据加载。加载完成后,在 “数据” 视图中可查看数据集的字段列表,确认纬度和经度字段已正确识别。
接着,设置经纬度字段的数据类型。在字段列表中,选中纬度字段,在 “建模” 选项卡的 “数据类型” 下拉菜单中选择 “十进制数”;同样,将经度字段的数据类型也设置为 “十进制数”。然后,在 “建模” 选项卡中找到 “数据类别”,分别将纬度字段的 “数据类别” 设置为 “纬度”,经度字段的 “数据类别” 设置为 “经度”,这一步是 Power BI 正确识别地理数据的关键。
之后,创建热力图视觉对象。在 “可视化” 面板中,找到 “热力图” 图标并点击,此时画布上会出现一个空白的热力图框。将数据集的纬度字段拖至 “视觉对象” 的 “纬度” 区域,将经度字段拖至 “经度” 区域。然后,选择一个用于表示热力强度的数值字段,如销售数量、用户数量等,将其拖至 “值” 区域,Power BI 会自动根据经纬度坐标和数值字段的大小生成热力图,数值越高的区域颜色越深,反之则越浅。
为了使热力图更清晰地传达数据信息,需要进行适当的优化与调整。在 “格式” 选项卡中,可以调整热力图的颜色方案,Power BI 提供了多种预设的颜色主题,也可自定义颜色渐变,选择从冷色调到暖色调的渐变,使不同强度的区域对比更明显。
调整热力图的半径大小也很重要。半径决定了单个数据点影响的区域范围,半径过小,热力图会显得分散,难以看出整体分布趋势;半径过大,可能会掩盖局部的细节差异。在 “格式” 选项卡的 “热力图” 设置中,找到 “半径” 滑块,根据数据的分布密度和分析需求进行调整,使热力图既能体现整体分布,又能展示局部特征。
此外,还可以添加背景地图图层。在 “格式” 选项卡的 “背景” 设置中,可选择不同的地图样式,如街道图、卫星图等,背景地图能为热力图提供更好的地理参考,帮助阅读者理解数据所在的具体地理位置。同时,可通过设置 “缩放” 和 “平移” 功能,方便在查看热力图时聚焦到特定区域。
基于经纬度数据的 Power BI 地图热力图在多个领域都有广泛的应用场景。在零售行业,企业可通过分析门店的经纬度和销售数据生成热力图,直观了解不同区域的销售业绩分布,为新店选址提供数据支持,避开销售冷清区域,选择潜在消费能力强的区域开设门店。
在交通领域,利用交通流量监测点的经纬度和车流量数据制作热力图,能够清晰展示交通拥堵的高发区域和时段,交通管理部门可据此制定针对性的疏导措施,优化交通信号配时,改善交通状况。
在城市规划中,热力图可用于分析人口分布、公共设施使用频率等数据,帮助规划人员合理布局学校、医院、公园等公共资源,提高资源的利用效率,提升城市居民的生活质量。
总之,借助 Power BI 制作基于经纬度数据的地图热力图,能够将复杂的地理数据转化为直观易懂的可视化效果,为企业决策、行业分析提供有力的支持,充分发挥数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18