
在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为数据领域极具影响力的专业认证,CDA 数据分析师认证始终紧密贴合行业动态与前沿需求。2025 年 7 月 25 日起,CDA Level I 和 Level II 考试大纲迎来重大更新,旨在让 CDA 认证更具前瞻性、实用性与严谨性,全方位提升认证价值,深度契合个人职业能力成长轨迹。
CDA Level I 主要面向零基础入行和转行就业人员、业务岗位想提升数据能力者。此次考纲更新,大幅扩充了贴合企业实际需求的数据能力、数据分析思维板块内容。新增商业数据分析框架,助力考生构建起从数据收集、处理到分析解读的完整思维链路,更好地理解如何运用数据为商业决策提供支撑。
战略与业务数据分析、归因分析内容的加入,使考生能站在更高视角,剖析业务成果产生的原因,通过数据洞察挖掘潜在业务增长点。标签体系与用户画像内容从 Level II 下放至此,帮助考生掌握基于数据构建用户画像的实操技能,为精准营销、个性化服务等业务场景筑牢根基。
在统计学知识方面,新增参数估计内容,让考生对数据特征的推断分析能力得到进一步提升。同时,数据架构与 ETL 相关内容从 Level II 下沉,使考生初步了解数据从产生到进入分析环节的流转过程,增强数据处理实操能力。
为突出对实际操作技能的考查,考纲减少了部分理论性内容,如删除数据分析的方法论、道德与行为准则相关内容,t 分布、卡方分布、F 分布及相关分析等内容调整至 Level II。SQL 函数、数据管理与数据安全内容也调整至 Level II。此外,还增加了 Excel、BI 等表格数据工具操作的考察比例,确保考生熟练掌握基础数据处理工具,能快速上手日常数据工作。指标体系与指标体系管理内容分别单列为一章,强化考生对业务指标体系搭建与管理的认知;业务数据分析与分析图表合并为数据分析方法统一考察,促使考生将理论与实践紧密结合,提升数据可视化表达及业务分析能力。
CDA Level II 面向有一定数据分析经验,期望提升技能水平、深化专业能力的从业者。考纲更新着重打造进阶数据分析思维,引入量化策略分析框架与流程,帮助考生构建更严谨、科学的数据分析策略,为企业制定数据驱动的决策提供有力依据。
数据整合与特征处理相关内容的加入,要求考生掌握从多源数据中提取有效信息、整合清洗数据,并进行特征工程处理的能力,为后续高效建模分析奠定基础。相关系数、t 分布、卡方分布、F 分布内容从 Level I 上浮至此,加深考生对统计学知识在数据分析中应用的理解深度,使其能运用更复杂的统计方法挖掘数据规律。
决策树相关内容从 Level III 下放,拓宽考生对数据挖掘算法的掌握范畴,学会运用决策树模型进行分类、预测等分析任务。数据管理与数据安全内容从 Level I 上浮,强调数据全生命周期管理及安全防护的重要性,培养考生在实际工作中保障数据资产安全的意识与能力。
此次更新删除了标签体系与用户画像、数字化工作方法、ETL 等下放到 Level I 的内容,以及 Arima 算法等调整至 Level III 的内容,使 Level II 考纲内容更加聚焦中高级数据分析技能。同时,考纲大幅增加 Python 数据处理、可视化、建模相关代码的考察比例,明确要求考生具备扎实的 Python 编程能力,熟练运用 Python 进行数据处理、分析及建模工作,以满足企业对数据分析师日益增长的编程技能需求。此外,数据可视化与统计制图单列为一章,着重提升考生数据可视化呈现能力,使其能够将复杂的数据结果以直观、易懂的图表形式展现,助力企业高效沟通与决策。
随着考纲内容的更新,CDA Level I 和 Level II 的考试题型数量及分值也进行了相应调整。全新的题目设计进一步强化对应用能力的测试,更精准地考查考生在实际工作场景中的技能运用水平,确保认证结果与个人职业能力成长紧密相连。以 Level I 为例,调整后单选题数量为 85 题,满分 100 分,考试时长 120 分钟。在有限时间内,考生需凭借扎实的知识储备与熟练的操作技能,完成对大量实际应用问题的解答,以此全面检验其对考纲内容的掌握程度及应用能力。
对于计划参加 CDA Level I 和 Level II 考试的考生而言,面对全新考纲,需及时调整备考策略。首先,深入研读新考纲,明确各章节知识点的调整变化,梳理出重点、难点内容,制定合理的学习计划,确保备考有的放矢。在学习过程中,注重理论知识与实际操作相结合,多参与真实业务场景案例分析,通过实践加深对知识点的理解与运用。针对新增的考察内容,如 Level I 中的商业数据分析框架、Level II 中的量化策略分析框架等,可借助专业教材、在线课程、行业论坛等资源,拓宽学习渠道,加深对前沿知识的掌握。同时,加强对 Python、Excel、BI 等工具的实操练习,提升编程及数据处理能力,适应考试对应用技能的高要求。此外,积极参加模拟考试,熟悉新的题型分布与考试节奏,合理分配答题时间,提前适应考试氛围,提升应试能力。
2025 年 CDA 数据分析师考纲的更新,是顺应行业发展趋势、满足企业人才需求的重要举措。它为数据分析师人才培养树立了新标杆,为从业者职业发展提供了更清晰的成长路径。无论是初入行业的新人,还是寻求职业突破的数据领域从业者,紧跟考纲变化,提升自身专业素养与应用能力,都将在数据驱动的时代浪潮中抢占先机,为个人职业发展与行业进步贡献力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01