
在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为数据领域极具影响力的专业认证,CDA 数据分析师认证始终紧密贴合行业动态与前沿需求。2025 年 7 月 25 日起,CDA Level I 和 Level II 考试大纲迎来重大更新,旨在让 CDA 认证更具前瞻性、实用性与严谨性,全方位提升认证价值,深度契合个人职业能力成长轨迹。
CDA Level I 主要面向零基础入行和转行就业人员、业务岗位想提升数据能力者。此次考纲更新,大幅扩充了贴合企业实际需求的数据能力、数据分析思维板块内容。新增商业数据分析框架,助力考生构建起从数据收集、处理到分析解读的完整思维链路,更好地理解如何运用数据为商业决策提供支撑。
战略与业务数据分析、归因分析内容的加入,使考生能站在更高视角,剖析业务成果产生的原因,通过数据洞察挖掘潜在业务增长点。标签体系与用户画像内容从 Level II 下放至此,帮助考生掌握基于数据构建用户画像的实操技能,为精准营销、个性化服务等业务场景筑牢根基。
在统计学知识方面,新增参数估计内容,让考生对数据特征的推断分析能力得到进一步提升。同时,数据架构与 ETL 相关内容从 Level II 下沉,使考生初步了解数据从产生到进入分析环节的流转过程,增强数据处理实操能力。
为突出对实际操作技能的考查,考纲减少了部分理论性内容,如删除数据分析的方法论、道德与行为准则相关内容,t 分布、卡方分布、F 分布及相关分析等内容调整至 Level II。SQL 函数、数据管理与数据安全内容也调整至 Level II。此外,还增加了 Excel、BI 等表格数据工具操作的考察比例,确保考生熟练掌握基础数据处理工具,能快速上手日常数据工作。指标体系与指标体系管理内容分别单列为一章,强化考生对业务指标体系搭建与管理的认知;业务数据分析与分析图表合并为数据分析方法统一考察,促使考生将理论与实践紧密结合,提升数据可视化表达及业务分析能力。
CDA Level II 面向有一定数据分析经验,期望提升技能水平、深化专业能力的从业者。考纲更新着重打造进阶数据分析思维,引入量化策略分析框架与流程,帮助考生构建更严谨、科学的数据分析策略,为企业制定数据驱动的决策提供有力依据。
数据整合与特征处理相关内容的加入,要求考生掌握从多源数据中提取有效信息、整合清洗数据,并进行特征工程处理的能力,为后续高效建模分析奠定基础。相关系数、t 分布、卡方分布、F 分布内容从 Level I 上浮至此,加深考生对统计学知识在数据分析中应用的理解深度,使其能运用更复杂的统计方法挖掘数据规律。
决策树相关内容从 Level III 下放,拓宽考生对数据挖掘算法的掌握范畴,学会运用决策树模型进行分类、预测等分析任务。数据管理与数据安全内容从 Level I 上浮,强调数据全生命周期管理及安全防护的重要性,培养考生在实际工作中保障数据资产安全的意识与能力。
此次更新删除了标签体系与用户画像、数字化工作方法、ETL 等下放到 Level I 的内容,以及 Arima 算法等调整至 Level III 的内容,使 Level II 考纲内容更加聚焦中高级数据分析技能。同时,考纲大幅增加 Python 数据处理、可视化、建模相关代码的考察比例,明确要求考生具备扎实的 Python 编程能力,熟练运用 Python 进行数据处理、分析及建模工作,以满足企业对数据分析师日益增长的编程技能需求。此外,数据可视化与统计制图单列为一章,着重提升考生数据可视化呈现能力,使其能够将复杂的数据结果以直观、易懂的图表形式展现,助力企业高效沟通与决策。
随着考纲内容的更新,CDA Level I 和 Level II 的考试题型数量及分值也进行了相应调整。全新的题目设计进一步强化对应用能力的测试,更精准地考查考生在实际工作场景中的技能运用水平,确保认证结果与个人职业能力成长紧密相连。以 Level I 为例,调整后单选题数量为 85 题,满分 100 分,考试时长 120 分钟。在有限时间内,考生需凭借扎实的知识储备与熟练的操作技能,完成对大量实际应用问题的解答,以此全面检验其对考纲内容的掌握程度及应用能力。
对于计划参加 CDA Level I 和 Level II 考试的考生而言,面对全新考纲,需及时调整备考策略。首先,深入研读新考纲,明确各章节知识点的调整变化,梳理出重点、难点内容,制定合理的学习计划,确保备考有的放矢。在学习过程中,注重理论知识与实际操作相结合,多参与真实业务场景案例分析,通过实践加深对知识点的理解与运用。针对新增的考察内容,如 Level I 中的商业数据分析框架、Level II 中的量化策略分析框架等,可借助专业教材、在线课程、行业论坛等资源,拓宽学习渠道,加深对前沿知识的掌握。同时,加强对 Python、Excel、BI 等工具的实操练习,提升编程及数据处理能力,适应考试对应用技能的高要求。此外,积极参加模拟考试,熟悉新的题型分布与考试节奏,合理分配答题时间,提前适应考试氛围,提升应试能力。
2025 年 CDA 数据分析师考纲的更新,是顺应行业发展趋势、满足企业人才需求的重要举措。它为数据分析师人才培养树立了新标杆,为从业者职业发展提供了更清晰的成长路径。无论是初入行业的新人,还是寻求职业突破的数据领域从业者,紧跟考纲变化,提升自身专业素养与应用能力,都将在数据驱动的时代浪潮中抢占先机,为个人职业发展与行业进步贡献力量。
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18