
以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点击下方链接
https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
帕累托分析(Pareto Analysis)源于经济学家维尔弗雷多·帕累托提出的"二八法则",其核心原理是通过识别导致80%结果的20%关键因素,帮助决策者聚焦资源解决主要矛盾。
具体实施步骤包含:
在管理和质量控制领域,帕累托分析(Pareto Analysis)是一种决策工具,用于识别少数重要因素对总体影响的程度。除此之外还可以有如下应用:
使用前需安装,代码运行的pyecharts版本是2.0.5
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==2.0.5
首先,我们需要导入Pyecharts中的Bar和Line图表类,以及options类,用于实现对各个图标的配置,此外如果代码需要在jupyter notebook中展示图形还需要从globals中导入CurrentConfig, NotebookType做执行环境的配置,对于新版本的jupyter notebook统一设置为NotebookType.JUPYTER_LAB。
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
# from pyecharts.globals import CurrentConfig, NotebookType
# CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_LAB
# 定义原始数据
categories = ["产品质量问题", "送货延迟", "客户服务不满", "价格不公", "其他"]
counts = [40, 30, 20, 5, 5]
技术细节说明:
total_counts = sum(counts) # 计算总量
cumulative_percents = [sum(counts[:i+1])/total_counts for i in range(len(counts))] # 累进计算
计算过程解析:
(1) 柱状图初始化
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
bar.render_notebook()
关键技术点:
(2) 折线图构建
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
line.render_notebook()
视觉优化设计:
帕累托图需将以上两张图组合在一起,可以使用overlap实现
bar.overlap(line) # 图层叠加
bar.render_notebook()
可以看到图形很奇怪,因为折线图对应的数据与柱形图对应的数据量纲相差很大。那如何优化?
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts, yaxis_index=0) # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
# 优化点1 添加副y轴
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="累计百分比",
min_=0.3,
max_=1.1,
interval=0.2
)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
yaxis_index=1, # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
bar.overlap(line)
# 调整图层渲染顺序不然折线图被柱形图遮挡
bar.options["series"][1]["z"] = 1 # 折线图层
bar.options["series"][0]["z"] = 0 # 柱状图层
bar.render_notebook()
深度优化说明:
# bar.load_javascript() # 最新版jupyter notebook需要这样
bar.render_notebook() # Jupyter内嵌展示
# bar.render("pareto.html") # 生成独立HTML文件
多环境支持:
大家如果觉得自己的可视化技能训练的不错了,可以实操起来。
本实现方案通过Pyecharts高效构建了交互式帕累托分析图表,将技术实现与业务分析有机结合,为决策者提供直观的数据支持。开发者可根据具体业务需求扩展功能模块,构建完整的决策分析系统。绘制帕累托的流程相对固定,因此这些代码也可以封装为函数方便后续的复用。
# 完整实现代码
def get_plt(categories,counts):
import pandas as pd
df = pd.DataFrame({"categories":categories,"counts":counts})
categories = list(df.sort_values("counts")["categories"])
counts = list(df.sort_values("counts")["counts"])
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts, yaxis_index=0) # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
# 优化点1 添加副y轴
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="累计百分比",
min_=0.3,
max_=1.1,
interval=0.2
)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
yaxis_index=1, # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
bar.overlap(line)
# 调整图层渲染顺序不然折线图被柱形图遮挡
bar.options["series"][1]["z"] = 1 # 折线图层
bar.options["series"][0]["z"] = 0 # 柱状图层
return bar
以上的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14