
ID3算法
ID3和C4.5都是由澳大利亚计算机科学家Ross Quinlan开发的决策树构建算法,其中C4.5是在ID3上发展而来的。
ID3算法的核心是在决策树各个结点上应用信息增益准则选择特征,递归地构建决策树。具体方法是:从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止。最后得到一棵决策树。ID3相当于用极大似然法进行概率模型的选择。 下面我们给出一个更加正式的ID3算法的描述:
若D中所有实例属于同一类Ck,则T为单结点树,并将类Ck作为该结点的类标记,返回T;
若A=∅,则T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
否则,计算A中各特征对D的信息增益,选择信息增益最大的特征Ag;
(1) 如果Ag的信息增益小于阈值ϵ,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
(2) 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
对第i个子结点,以Di为训练集,以A−{Ag}为特征集,递归地调用步骤(1)~(3),得到子树Ti,返回Ti。
下面我们来看一个具体的例子,我们的任务是根据天气情况计划是否要外出打球:
首先来算一下根节点的熵:
然后再分别计算每一种划分的信息熵,比方说我们选择Outlook这个特征来做划分,那么得到的信息熵为
据此可计算采用Outlook这个特征来做划分时的信息增益为
同理,选用其他划分时所得到之信息增益如下:
取其中具有最大信息增益的特征来作为划分的标准,然后你会发现其中一个分支的熵为零(时间中阈值可以设定来惩罚过拟合),所以把它变成叶子,即得
对于其他熵不为零(或者大于预先设定的阈值)的分支,那么则需要做进一步的划分
根据上述的规则继续递归地执行下去。最终,我们得到了如下一棵决策树。
C4.5算法
C4.5是2006年国际数据挖掘大会票选出来的十大数据挖掘算法之首,可见它应该是非常powerful的!不仅如此,事实上,C4.5的执行也相当的straightforward。
C4.5算法与ID3算法相似,C4.5算法是由ID3算法演进而来的。C4.5在生成的过程中,用信息增益比来选择特征。下面我们给出一个更加正式的C4.5算法的描述:
如果D中所有实例属于同一类Ck,则置T为单结点树,并将Ck作为该结点的类,返回T;
如果A=∅,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类,返回T;
否则,计算A中各特征对D的信息增益比,选择信息增益比最大的特征Ag;
(1) 如果Ag的信息增益比小于阈值ϵ,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类,返回T;
(2) 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
对结点i,以Di为训练集,以A−{Ag}为特征集,递归地调用步骤(1)~(3),得到子树Ti,返回Ti。
How to do it in practice?
易见,C4.5跟ID3的执行步骤非常类似,只是在划分时所采用的准则不同。我们这里不再赘述。但是这里可以来看看在实际的数据分析中,该如何操作。我们所使用的数据是如下所示的一个csv文件,文件内容同本文最初给出的Play Ball例子中的数据是完全一致的。
使用Weka进行数据挖掘是非常容易的,你不再需要像R语言或者MATLAB那样编写代码或者调用函数。基于GUI界面,在Weka中你只需要点点鼠标即可!首先我们单击“Explorer”按钮来打开操作的主界面,如下图所示。
然后我们单击“Open File…”,并从相应的目录下选择你要用来进行模型训练的数据文件,如下图所示。
Weka提供了非常易于操作的各种数据预处理功能,你可以自己尝试探索一下。注意到属性Day其实在构建决策树时是不需要的,我选中该属性,并将其移除,如下图所示。
完成数据预处理后,我们就可以开始进行模型训练了。因为我们是要建立决策树,所以选择“Classify”选项卡,然后在“Classifier”中选择J48。你可以能会疑惑我们不是要使用C4.5算法建立决策树吗?为什么要选择J48呢?其实J48是一个开源的C4.5的Java实现版本(J48 is an open source Java implementation of the C4.5 algorithm),所以J48就是C4.5。 数据分析师培训
然后你可以自定义的选择“Test options”中的一些测试选项,这里我们不做过多说明。然后单击“Start”按钮,Weka就为我们建立了一棵决策树,你可以从“Classifier output”栏目中看到模型训练的一些结果。但是对于决策树而言,你可以觉得文字看起来还不够直观。不要紧,Weka还为你提供了可视化的决策树建模呈现。为此,你需要右键单击刚刚训练好的模型,然后从右键菜单中选择“Visualize tree”,如下图所示。
最后我们得到了一棵与前面例子中相一致的决策树,如下图所示。
在后续的决策树系列文章中,我们将继续深入探讨CART算法等相关话题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27