
例6.1 不同装配方式对生产的过滤系统数量的差异性检验
某城市过滤水系统生产公司,有A、B、C3种方式进行过滤水系统的装配,该公司为了研究三种装配方式生产的过滤系统数量是否有差异,从全体装配工人中抽取了15名工人,然后随机地指派一种装配方式,这样每个装配方式就有5个工人。在指派装配方法和培训工作都完成后,一周内对每名工人的装配过滤系统数量进行统计如下:
方法A | 方法B | 方法C |
---|---|---|
58 | 58 | 48 |
64 | 69 | 57 |
55 | 71 | 59 |
66 | 64 | 47 |
67 | 68 | 49 |
请根据数据判断3种装配方式有无差异
分析过程:由于目标是判断3种装配方式有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:均值不全相等
import pandas as pd
import numpy as np
from scipy import stats
# 数据
A = [58,64,55,66,67]
B = [58,69,71,64,68]
C = [48,57,59,47,49]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
F_value: 9.176470588235295
p_value: 0.0038184120755124806
结论 选择显著性水平 0.05 的话,p = 0.0038 < 0.05
,故拒绝原假设。支持三种装配方式装配数量均值不全相等的备则假设。
例6.2 不同优惠金额对购买转化率的差异性检验
某公司营销中心为了提升销量,针对某产品设计了3种不同金额的优惠,想测试三种优惠方式对于用户的购买转化率是否有显著影响,先收集到了三种不同方式在6个月内的转化率数据
请根据数据判断3种不同优惠金额的转化率有无差异
优惠A | 优惠B | 优惠C |
---|---|---|
0.043 | 0.05 | 0.048 |
0.047 | 0.048 | 0.05 |
0.051 | 0.045 | 0.047 |
0.049 | 0.055 | 0.056 |
0.045 | 0.048 | 0.054 |
0.0469 | 0.0491 | 0.0509 |
分析过程:由于目标是判断3种不同金额的优惠券对于转化率有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:认为这几组之间的购买率不一样
P < 0.05 拒绝原假设,倾向于支持不同优惠金额购买率不一样的备择假设。认为不同优惠金额会对购买率产生影响 P > 0.05 无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
import pandas as pd
import numpy as np
from scipy import stats
A = [0.043 , 0.047 , 0.051 , 0.049 , 0.045 , 0.0469]
B = [0.05 , 0.048 , 0.045 , 0.055 , 0.048 , 0.0491]
C = [0.048 , 0.05 , 0.047 , 0.056 , 0.054 , 0.0509]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
# F_value: 2.332956563862427
# p_value: 0.13116820340181937
结论 选择显著性水平 0.05 的话,p = 0.1311 > 0.05
,故无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
这里的等重复实验,意思就是针对每个组合做大于等于两次的实验,比如下方例子中表里A1和B1的组合里面有2个数字,即说明做了两次实验,如果是3个数字则说明3次实验,依次类推。
例6.3 不同燃料种类和推进器的火箭射程差异性检验
火箭的射程与燃料的种类和推进器的型号有关,现对四种不同的燃料与三种不同型号的推进器进行试验,每种组合各发射火箭两次,测得火箭的射程如表(以海里计)(设显著性水平为0.05)
燃料 | B1 | B2 | B3 |
---|---|---|---|
A1 | 58.2 , 52.6 | 56.2 , 41.2 | 65.3 , 60.8 |
A2 | 49.1 , 42.8 | 54.1 , 50.5 | 51.6 , 48.4 |
A3 | 60.1 , 58.3 | 70.9 , 73.2 | 39.2 , 40.7 |
A4 | 75.8 , 71.5 | 58.2 , 51.0 | 48.7 , 41.0 |
import numpy as np
import pandas as pd
d = np.array([[58.2, 52.6, 56.2, 41.2, 65.3, 60.8],
[49.1, 42.8, 54.1, 50.5, 51.6, 48.4],
[60.1, 58.3, 70.9, 73.2, 39.2, 40.7],
[75.8, 71.5, 58.2, 51.0, 48.7,41.4]
])
data = pd.DataFrame(d)
data.index=pd.Index(['A1','A2','A3','A4'],name='燃料')
data.columns=pd.Index(['B1','B1','B2','B2','B3','B3'],name='推进器')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['燃料'])
data = data.rename(columns={'value':'射程'})
data.sample(5)
燃料 | 推进器 | 射程 |
---|---|---|
A2 | B3 | 48.4 |
A3 | B2 | 73.2 |
A3 | B3 | 39.2 |
A4 | B1 | 71.5 |
A2 | B2 | 54.1 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('射程~C(燃料) + C(推进器)+C(燃料):C(推进器)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
sum_sq | df | F | PR(>F) | |
---|---|---|---|---|
C(燃料) | 261.675 | 3 | 4.41739 | 0.025969 |
C(推进器) | 370.981 | 2 | 9.3939 | 0.00350603 |
C(燃料):C(推进器) | 1768.69 | 6 | 14.9288 | 6.15115e-05 |
Residual | 236.95 | 12 | nan | nan |
结论:
对燃料因素来说,其p = 0.0259 < 0.05
所以拒绝,认为燃料对射程影响显著;
对推进器因素来说,其p = 0.0035 < 0.05
,所以拒绝,认为推进器对射程影响显著;
对燃料和推进器的交互因素来说,其p = 0.000062< 0.05
,所以拒绝,认为交互因素其对射程影响显著。
在等重复实验中,我们为了检验实验中两个因素的交互作用,针对每对组合至少要做2次以上实验,才能够将交互作用与误差分离开来,在处理实际问题时候,如果我们一直不存在交互作用,或者交互作用对实验指标影响极小,则可以不考虑交互作用,此时每对组合只做一次实验,类似下方例子中的表中数据:
例6.4 不同时间、不同地点颗粒状物含量差异性检验 无重复实验
下面给出了在5个不同地点、不同时间空气中的颗粒状物(单位:mg/m°)含 量的数据记录于表中,试在显著性水平下检验不同时间、不同地点颗粒状物含量有无显著差异?(假设两者没有交互作用〉
因素B -地点 | ||||||
---|---|---|---|---|---|---|
因素A - 时间 | ||||||
1995年10月 | 76 | 67 | 81 | 56 | 51 | |
1996年01月 | 82 | 69 | 96 | 59 | 70 | |
1996年05月 | 68 | 59 | 67 | 54 | 42 | |
1996年08月 | 63 | 56 | 64 | 58 | 37 |
import numpy as np
import pandas as pd
d = np.array([
[76,67,81,56,51],
[82,69,96,59,70],
[68,59,67,54,42],
[63,56,64,58,37]])
data = pd.DataFrame(d)
data.index=pd.Index(['1995年10月','1996年01月','1996年05月','1996年08月'],name='时间')
data.columns=pd.Index(['B1','B2','B3','B4','B5'],name='地点')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['时间'])
data = data.rename(columns={'value':'颗粒状物含量'})
data.sample(5)
随机查看5条转化后的数据:
时间 | 地点 | 颗粒状物含量 |
---|---|---|
1996年05月 | B4 | 54 |
1995年10月 | B4 | 56 |
1996年05月 | B3 | 67 |
1996年01月 | B2 | 69 |
1996年01月 | B3 | 96 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('颗粒状物含量~C(时间) + C(地点)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
sum_sq | df | F | PR(>F) | |
---|---|---|---|---|
C(时间) | 1182.95 | 3 | 10.7224 | 0.00103293 |
C(地点) | 1947.5 | 4 | 13.2393 | 0.000234184 |
Residual | 441.3 | 12 | nan | nan |
结论:
对时间因素来说,其p = 0.001033 < 0.05
所以拒绝,认为时间对颗粒状物含量影响显著;
对地点因素来说,其p = 0.000234 < 0.05
,所以拒绝,认为地点对颗粒状物含量影响显著;
下期将为大家带来《统计学极简入门》之相关分析
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28