
例6.1 不同装配方式对生产的过滤系统数量的差异性检验
某城市过滤水系统生产公司,有A、B、C3种方式进行过滤水系统的装配,该公司为了研究三种装配方式生产的过滤系统数量是否有差异,从全体装配工人中抽取了15名工人,然后随机地指派一种装配方式,这样每个装配方式就有5个工人。在指派装配方法和培训工作都完成后,一周内对每名工人的装配过滤系统数量进行统计如下:
方法A | 方法B | 方法C |
---|---|---|
58 | 58 | 48 |
64 | 69 | 57 |
55 | 71 | 59 |
66 | 64 | 47 |
67 | 68 | 49 |
请根据数据判断3种装配方式有无差异
分析过程:由于目标是判断3种装配方式有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:均值不全相等
import pandas as pd
import numpy as np
from scipy import stats
# 数据
A = [58,64,55,66,67]
B = [58,69,71,64,68]
C = [48,57,59,47,49]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
F_value: 9.176470588235295
p_value: 0.0038184120755124806
结论 选择显著性水平 0.05 的话,p = 0.0038 < 0.05
,故拒绝原假设。支持三种装配方式装配数量均值不全相等的备则假设。
例6.2 不同优惠金额对购买转化率的差异性检验
某公司营销中心为了提升销量,针对某产品设计了3种不同金额的优惠,想测试三种优惠方式对于用户的购买转化率是否有显著影响,先收集到了三种不同方式在6个月内的转化率数据
请根据数据判断3种不同优惠金额的转化率有无差异
优惠A | 优惠B | 优惠C |
---|---|---|
0.043 | 0.05 | 0.048 |
0.047 | 0.048 | 0.05 |
0.051 | 0.045 | 0.047 |
0.049 | 0.055 | 0.056 |
0.045 | 0.048 | 0.054 |
0.0469 | 0.0491 | 0.0509 |
分析过程:由于目标是判断3种不同金额的优惠券对于转化率有无差异,多样本的检验用方差分析
于是我们有了原假设和备择假设
:认为这几组之间的购买率不一样
P < 0.05 拒绝原假设,倾向于支持不同优惠金额购买率不一样的备择假设。认为不同优惠金额会对购买率产生影响 P > 0.05 无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
import pandas as pd
import numpy as np
from scipy import stats
A = [0.043 , 0.047 , 0.051 , 0.049 , 0.045 , 0.0469]
B = [0.05 , 0.048 , 0.045 , 0.055 , 0.048 , 0.0491]
C = [0.048 , 0.05 , 0.047 , 0.056 , 0.054 , 0.0509]
data = [A, B, C]
# 方差的齐性检验
w, p = stats.levene(*data)
if p < 0.05:
print('方差齐性假设不成立')
# 成立之后, 就可以进行单因素方差分析
f_value, p_value = stats.f_oneway(*data)
# 输出结果
print("F_value:", f_value)
print("p_value:", p_value)
# F_value: 2.332956563862427
# p_value: 0.13116820340181937
结论 选择显著性水平 0.05 的话,p = 0.1311 > 0.05
,故无法拒绝原假设。认为不同优惠金额不会对购买率产生影响
这里的等重复实验,意思就是针对每个组合做大于等于两次的实验,比如下方例子中表里A1和B1的组合里面有2个数字,即说明做了两次实验,如果是3个数字则说明3次实验,依次类推。
例6.3 不同燃料种类和推进器的火箭射程差异性检验
火箭的射程与燃料的种类和推进器的型号有关,现对四种不同的燃料与三种不同型号的推进器进行试验,每种组合各发射火箭两次,测得火箭的射程如表(以海里计)(设显著性水平为0.05)
燃料 | B1 | B2 | B3 |
---|---|---|---|
A1 | 58.2 , 52.6 | 56.2 , 41.2 | 65.3 , 60.8 |
A2 | 49.1 , 42.8 | 54.1 , 50.5 | 51.6 , 48.4 |
A3 | 60.1 , 58.3 | 70.9 , 73.2 | 39.2 , 40.7 |
A4 | 75.8 , 71.5 | 58.2 , 51.0 | 48.7 , 41.0 |
import numpy as np
import pandas as pd
d = np.array([[58.2, 52.6, 56.2, 41.2, 65.3, 60.8],
[49.1, 42.8, 54.1, 50.5, 51.6, 48.4],
[60.1, 58.3, 70.9, 73.2, 39.2, 40.7],
[75.8, 71.5, 58.2, 51.0, 48.7,41.4]
])
data = pd.DataFrame(d)
data.index=pd.Index(['A1','A2','A3','A4'],name='燃料')
data.columns=pd.Index(['B1','B1','B2','B2','B3','B3'],name='推进器')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['燃料'])
data = data.rename(columns={'value':'射程'})
data.sample(5)
燃料 | 推进器 | 射程 |
---|---|---|
A2 | B3 | 48.4 |
A3 | B2 | 73.2 |
A3 | B3 | 39.2 |
A4 | B1 | 71.5 |
A2 | B2 | 54.1 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('射程~C(燃料) + C(推进器)+C(燃料):C(推进器)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
sum_sq | df | F | PR(>F) | |
---|---|---|---|---|
C(燃料) | 261.675 | 3 | 4.41739 | 0.025969 |
C(推进器) | 370.981 | 2 | 9.3939 | 0.00350603 |
C(燃料):C(推进器) | 1768.69 | 6 | 14.9288 | 6.15115e-05 |
Residual | 236.95 | 12 | nan | nan |
结论:
对燃料因素来说,其p = 0.0259 < 0.05
所以拒绝,认为燃料对射程影响显著;
对推进器因素来说,其p = 0.0035 < 0.05
,所以拒绝,认为推进器对射程影响显著;
对燃料和推进器的交互因素来说,其p = 0.000062< 0.05
,所以拒绝,认为交互因素其对射程影响显著。
在等重复实验中,我们为了检验实验中两个因素的交互作用,针对每对组合至少要做2次以上实验,才能够将交互作用与误差分离开来,在处理实际问题时候,如果我们一直不存在交互作用,或者交互作用对实验指标影响极小,则可以不考虑交互作用,此时每对组合只做一次实验,类似下方例子中的表中数据:
例6.4 不同时间、不同地点颗粒状物含量差异性检验 无重复实验
下面给出了在5个不同地点、不同时间空气中的颗粒状物(单位:mg/m°)含 量的数据记录于表中,试在显著性水平下检验不同时间、不同地点颗粒状物含量有无显著差异?(假设两者没有交互作用〉
因素B -地点 | ||||||
---|---|---|---|---|---|---|
因素A - 时间 | ||||||
1995年10月 | 76 | 67 | 81 | 56 | 51 | |
1996年01月 | 82 | 69 | 96 | 59 | 70 | |
1996年05月 | 68 | 59 | 67 | 54 | 42 | |
1996年08月 | 63 | 56 | 64 | 58 | 37 |
import numpy as np
import pandas as pd
d = np.array([
[76,67,81,56,51],
[82,69,96,59,70],
[68,59,67,54,42],
[63,56,64,58,37]])
data = pd.DataFrame(d)
data.index=pd.Index(['1995年10月','1996年01月','1996年05月','1996年08月'],name='时间')
data.columns=pd.Index(['B1','B2','B3','B4','B5'],name='地点')
# pandas宽表转长表
data = data.reset_index().melt(id_vars =['时间'])
data = data.rename(columns={'value':'颗粒状物含量'})
data.sample(5)
随机查看5条转化后的数据:
时间 | 地点 | 颗粒状物含量 |
---|---|---|
1996年05月 | B4 | 54 |
1995年10月 | B4 | 56 |
1996年05月 | B3 | 67 |
1996年01月 | B2 | 69 |
1996年01月 | B3 | 96 |
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 进行双因素方差分析
model = ols('颗粒状物含量~C(时间) + C(地点)', data =data).fit()
# 打印方差分析表
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
sum_sq | df | F | PR(>F) | |
---|---|---|---|---|
C(时间) | 1182.95 | 3 | 10.7224 | 0.00103293 |
C(地点) | 1947.5 | 4 | 13.2393 | 0.000234184 |
Residual | 441.3 | 12 | nan | nan |
结论:
对时间因素来说,其p = 0.001033 < 0.05
所以拒绝,认为时间对颗粒状物含量影响显著;
对地点因素来说,其p = 0.000234 < 0.05
,所以拒绝,认为地点对颗粒状物含量影响显著;
下期将为大家带来《统计学极简入门》之相关分析
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14