
作者:豆豆
来源:Python 技术
众所周知,Python 以简洁著称,这个从我们写的第一行 Python 代码中就能看出来。今天派森酱就给大家整理了一些经典的一行代码操作,可能有些你还不知道,但对你未来的工作(装逼)肯定有大用处。
平时的编码过程中,进制转换是非常常用的一个功能,尤其是涉及到一些算法的时候更是频繁。事实上 Python 已经内置了各个进制转换的 Api,咱们直接调用即可。
In [1]: int('1100', 2) Out[1]: 12 In [2]: int('30', 8) Out[2]: 24 In [3]: int('ac9', 16) Out[3]: 2761
斐波纳契数列是一个很经典的数列,其通项公式为第一项和第二项都为 1,从第三项开始,每一项都等于前两项之和。
In [4]: fibonacci = lambda x: x if x <= 1 else fibonacci(x - 1) + fibonacci(x - 2) In [5]: fibonacci(15) Out[5]: 610
快速排序是初级工程师常考的一个算法题,整个算法写下来的话基本都需要八九行,来看看 Python 是如何一行代码搞定快速排序的。
In [6]: quick_sort = lambda l: l if len(l) <= 1 else quick_sort([x for x in l[1:] if x < l[0]]) + [l[0]] + quick_sort([x for x in l[1:] if x >= l[0]]) In [7]: quick_sort([18, 20, 12, 99, 200, 59, 66, 34, 22]) Out[7]: [12, 18, 20, 22, 34, 59, 66, 99, 200]
文件操作也是我们常用的操作之一,但你见过用 print 函数来写入文件的么。
print("Hello, Python!", file=open('file.txt', 'w'))
顾名思义,字母异位词就是通过交换单词中字母的顺序,两个单词最终是一样的。
In [9]: from collections import Counter
In [10]: s1, s2 = 'apple', 'orange' In [11]: 'anagram' if Counter(s1) == Counter(s2) else 'not an anagram' Out[11]: 'not an anagram'
对于数据分析工作者,经常会接触到矩阵,那么就需要熟悉对矩阵的各种操作。而矩阵转换就是常规操作之一。
In [12]: num_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] In [13]: result = list(list(x) for x in zip(*num_list)) In [14]: result Out[14]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
虽然现在很多常用的算法都被封装成 Api 直接调用就好了,但并不意味着我们的工作就不需要写算法了。在写算法的过程中会用到一些常见的字典数,比如大写字母、小写字母、数字等。而这些 Python 都考虑到了,直接调用即可。
In [15]: import string In [16]: string.ascii_lowercase
Out[16]: 'abcdefghijklmnopqrstuvwxyz' In [17]: string.ascii_uppercase
Out[17]: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' In [18]: string.digits
Out[18]: '0123456789'
在对接外部接口或者数据处理时,嵌套列表是非常常见的数据结构,但显然整合成一个列表更容易处理。
In [19]: num_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] In [20]: result = [item for sublist in num_list for item in sublist] In [21]: result Out[21]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
推导式是 Python 的精华所在,极大的方便了我们创建列表和字典。
In [22]: num_list = [num for num in range(0, 10)] In [23]: num_list Out[23]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [24]: num_set = {num for num in range(0, 10)} In [25]: num_set Out[25]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} In [26]: num_dict = {x: x * x for x in range(1, 5)} In [27]: num_dict Out[27]: {1: 1, 2: 4, 3: 9, 4: 16}
今天派森酱带大家一起梳理了一些看起来比较有用(装逼)的一行代码操作,方便小伙伴们在以后的工作中提高工作效率,更愉快的摸鱼。
关于 Python 的简洁操作,你还有什么独家秘笈想和大家分享呢,可以在评论区多多交流哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27