
作者:豆豆
来源:Python 技术
众所周知,Python 以简洁著称,这个从我们写的第一行 Python 代码中就能看出来。今天派森酱就给大家整理了一些经典的一行代码操作,可能有些你还不知道,但对你未来的工作(装逼)肯定有大用处。
平时的编码过程中,进制转换是非常常用的一个功能,尤其是涉及到一些算法的时候更是频繁。事实上 Python 已经内置了各个进制转换的 Api,咱们直接调用即可。
In [1]: int('1100', 2) Out[1]: 12 In [2]: int('30', 8) Out[2]: 24 In [3]: int('ac9', 16) Out[3]: 2761
斐波纳契数列是一个很经典的数列,其通项公式为第一项和第二项都为 1,从第三项开始,每一项都等于前两项之和。
In [4]: fibonacci = lambda x: x if x <= 1 else fibonacci(x - 1) + fibonacci(x - 2) In [5]: fibonacci(15) Out[5]: 610
快速排序是初级工程师常考的一个算法题,整个算法写下来的话基本都需要八九行,来看看 Python 是如何一行代码搞定快速排序的。
In [6]: quick_sort = lambda l: l if len(l) <= 1 else quick_sort([x for x in l[1:] if x < l[0]]) + [l[0]] + quick_sort([x for x in l[1:] if x >= l[0]]) In [7]: quick_sort([18, 20, 12, 99, 200, 59, 66, 34, 22]) Out[7]: [12, 18, 20, 22, 34, 59, 66, 99, 200]
文件操作也是我们常用的操作之一,但你见过用 print 函数来写入文件的么。
print("Hello, Python!", file=open('file.txt', 'w'))
顾名思义,字母异位词就是通过交换单词中字母的顺序,两个单词最终是一样的。
In [9]: from collections import Counter
In [10]: s1, s2 = 'apple', 'orange' In [11]: 'anagram' if Counter(s1) == Counter(s2) else 'not an anagram' Out[11]: 'not an anagram'
对于数据分析工作者,经常会接触到矩阵,那么就需要熟悉对矩阵的各种操作。而矩阵转换就是常规操作之一。
In [12]: num_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] In [13]: result = list(list(x) for x in zip(*num_list)) In [14]: result Out[14]: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
虽然现在很多常用的算法都被封装成 Api 直接调用就好了,但并不意味着我们的工作就不需要写算法了。在写算法的过程中会用到一些常见的字典数,比如大写字母、小写字母、数字等。而这些 Python 都考虑到了,直接调用即可。
In [15]: import string In [16]: string.ascii_lowercase
Out[16]: 'abcdefghijklmnopqrstuvwxyz' In [17]: string.ascii_uppercase
Out[17]: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' In [18]: string.digits
Out[18]: '0123456789'
在对接外部接口或者数据处理时,嵌套列表是非常常见的数据结构,但显然整合成一个列表更容易处理。
In [19]: num_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] In [20]: result = [item for sublist in num_list for item in sublist] In [21]: result Out[21]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
推导式是 Python 的精华所在,极大的方便了我们创建列表和字典。
In [22]: num_list = [num for num in range(0, 10)] In [23]: num_list Out[23]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [24]: num_set = {num for num in range(0, 10)} In [25]: num_set Out[25]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} In [26]: num_dict = {x: x * x for x in range(1, 5)} In [27]: num_dict Out[27]: {1: 1, 2: 4, 3: 9, 4: 16}
今天派森酱带大家一起梳理了一些看起来比较有用(装逼)的一行代码操作,方便小伙伴们在以后的工作中提高工作效率,更愉快的摸鱼。
关于 Python 的简洁操作,你还有什么独家秘笈想和大家分享呢,可以在评论区多多交流哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27