
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,本篇文章应该算得上是2022年的第一篇原创了,抱歉,元旦期间小编有点偷懒。
今天小编来给大家讲一下Pandas模块当中的数据统计与排序,说到具体的就是value_counts()方法以及sort_values()方法。
value_counts()方法,顾名思义,主要是用于计算各个类别出现的次数的,而sort_values()方法则是对数值来进行排序,当然除了这些,还有很多大家不知道的衍生的功能等待被挖掘,下面小编就带大家一个一个的说过去。
我们这次用到的数据集是“非常有名”的泰坦尼克号的数据集,该数据源能够在很多平台上都能够找得到
import pandas as pd
df = pd.read_csv("titanic_train.csv")
df.head()
output
首先我们来看一下常规的用法,代码如下
df['Embarked'].value_counts()
output
S 644 C 168 Q 77 Name: Embarked, dtype: int64
下面我们简单来介绍一下value_counts()方法当中的参数,
DataFrame.value_counts(subset=None,
normalize=False,
sort=True,
ascending=False,
dropna=True)
常用到参数的具体解释为:
上面返回的结果是按照从大到小来进行排序的,当然我们也可以反过来,从小到大来进行排序,代码如下
df['Embarked'].value_counts(ascending=True)
output
Q 77 C 168 S 644 Name: Embarked, dtype: int64
同时我们也可以对索引,按照字母表的顺序来进行排序,代码如下
df['Embarked'].value_counts(ascending=True).sort_index(ascending=True)
output
C 168 Q 77 S 644 Name: Embarked, dtype: int64
当中的ascending=True指的是升序排序
默认的是value_counts()方法不会对空值进行统计,那要是我们也希望对空值进行统计的话,就可以加上dropna参数,代码如下
df['Embarked'].value_counts(dropna=False)
output
S 644 C 168 Q 77 NaN 2 Name: Embarked, dtype: int64
我们可以将数值的统计转化成百分比式的统计,可以更加直观地看到每一个类别的占比,代码如下
df['Embarked'].value_counts(normalize=True)
output
S 0.724409 C 0.188976 Q 0.086614 Name: Embarked, dtype: float64
要是我们希望对能够在后面加上一个百分比的符号,则需要在Pandas中加以设置,对数据的展示加以设置,代码如下
pd.set_option('display.float_format', '{:.2%}'.format) df['Embarked'].value_counts(normalize = True)
output
S 72.44% C 18.90% Q 8.66% Name: Embarked, dtype: float64
当然除此之外,我们还可以这么来做,代码如下
df['Embarked'].value_counts(normalize = True).to_frame().style.format('{:.2%}')
output
Embarked S 72.44% C 18.90% Q 8.66%
和Pandas模块当中的cut()方法相类似的在于,我们这里也可以将连续型数据进行分箱然后再来统计,代码如下
df['Fare'].value_counts(bins=3)
output
(-0.513, 170.776] 871 (170.776, 341.553] 17 (341.553, 512.329] 3 Name: Fare, dtype: int64
我们将Fare这一列同等份的分成3组然后再来进行统计,当然我们也可以自定义每一个分组的上限与下限,代码如下
df['Fare'].value_counts(bins=[-1, 20, 100, 550])
output
(-1.001, 20.0] 515 (20.0, 100.0] 323 (100.0, 550.0] 53 Name: Fare, dtype: int64
pandas模块当中的groupby()方法允许对数据集进行分组,它也可以和value_counts()方法联用更好地来进行统计分析,代码如下
df.groupby('Embarked')['Sex'].value_counts()
output
Embarked Sex C male 95 female 73 Q male 41 female 36 S male 441 female 203 Name: Sex, dtype: int64
上面的代码是针对“Embarked”这一类别下的“Sex”特征进行分组,然后再进一步进行数据的统计分析,当然出来的结果是Series数据结构,要是我们想让Series的数据结果编程DataFrame数据结构,可以这么来做,
df.groupby('Embarked')['Sex'].value_counts().to_frame()
下面我们来谈一下数据的排序,主要用到的是sort_values()方法,例如我们根据“年龄”这一列来进行排序,排序的方式为降序排,代码如下
df.sort_values("Age", ascending = False).head(10)
output
我们看到排序过之后的DataFrame数据集行索引依然没有变,我们希望行索引依然可以是从0开始依次的递增,就可以这么来做,代码如下
df.sort_values("Age", ascending = False, ignore_index = True).head(10)
output
下面我们简单来介绍一下sort_values()方法当中的参数
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', # last,first;默认是last ignore_index=False, key=None)
常用到参数的具体解释为:
我们还可以对多个字段进行排序,代码如下
df.sort_values(["Age", "Fare"], ascending = False).head(10)
output
同时我们也可以对不同的字段指定不同的排序方式,如下
df.sort_values(["Age", "Fare"], ascending = [False, True]).head(10)
output
我们可以看到在“Age”一样的情况下,“Fare”字段是按照升序的顺序来排的
我们可以自定义一个函数方法,然后运用在sort_values()方法当中,让其按照自己写的方法来排序,我们看如下的这组数据
df = pd.DataFrame({ 'product': ['keyboard', 'mouse', 'desk', 'monitor', 'chair'], 'category': ['C', 'C', 'O', 'C', 'O'], 'year': [2002, 2002, 2005, 2001, 2003], 'cost': ['$52', '$24', '$250', '$500', '$150'], 'promotion_time': ['20hr', '30hr', '20hr', '20hr', '2hr'],
})
output
当中的“cost”这一列带有美元符号“$”,因此就会干扰排序的正常进行,我们使用lambda方法自定义一个函数方法运用在sort_value()当中
df.sort_values( 'cost',
key=lambda val: val.str.replace('$', '').astype('float64')
)
output
当然我们还可以自定义一个更加复杂一点的函数,并且运用在sort_values()方法当中,代码如下
def sort_by_cost_time(x): if x.name == 'cost': return x.str.replace('$', '').astype('float64') elif x.name == 'promotion_time': return x.str.replace('hr', '').astype('int') else: return x
df.sort_values(
['year', 'promotion_time', 'cost'],
key=sort_by_cost_time
)
output
还有另外一种情况,例如我们遇到衣服的尺码,XS码、S码、M码、L码又或者是月份,Jan、Feb、Mar、Apr等等,需要我们自己去定义大小,这个时候我们需要用到的是CategoricalDtype
cat_size_order = CategoricalDtype(
['XS', 'S', 'M', 'L', 'XL'],
ordered=True
)
cat_size_order
output
CategoricalDtype(categories=['XS', 'S', 'M', 'L', 'XL'], ordered=True)
于是针对下面的数据
df = pd.DataFrame({ 'cloth_id': [1001, 1002, 1003, 1004, 1005, 1006], 'size': ['S', 'XL', 'M', 'XS', 'L', 'S'],
})
output
我们将事先定义好的顺序应用到该数据集当中,代码如下
df['size'] = df['size'].astype(cat_size_order)
df.sort_values('size')
output
先通过astype()来转换数据类型,然后再进行排序
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11