
大数据应用之数据画像建设
大家经常听到一个词,叫做“画像”,结合具体对象就是:“用户画像”、“商品画像”、“产品画像”、“资产画像”、……。特别是大数据时代下,在实际企业中,利用大数据进行“画像”建设是企业经营的基础,建设企业竞争优势重要的工具之一,当然也是大数据在企业应用最价值重要的场景之一。
去评价一家企业数据化运营程度,或者说数据驱动程度,或者说是否是用“数据说话”。也许尝试问下面几个问题可以进行评估:
1、是否建设了“画像”?
2、“画像”体系构建程度,针对什么对象进行了画像。
3、如何应用已经构建好的”画像”,已经构建画像的各种标签与指标。
4、……
画像为什么对企业那么重要,如何进行画像建设,我会后续把相关经验分享给大家,这篇文本更多从一些案例,让大家对于用户画像建设有直接的感觉。
标签是画像建设的基础
画像的建设过程分成下面几部分:
在画像建设中,标签的构建是关键。本文重点来讲数据标签的建设。标签是各类数据指标结合具体的应用/业务场景来构建,如果没有应用场景构建出来的标签往往就很难“落地“。
我们下面讲二个案例来说明数据标签建设过程:
案例一:用户的商品价格偏好标签
某公司的业务团队想要了解用户的消费偏好是怎么样的。当业务团队说我们要构建用户消费偏好画像的时候,往往是指各种场景下用户是如何选择做出选择的,所以需要具体把偏爱画像拆分成几个不同数据标签:
我们以价格偏好为例,也就是说用户的在购物时候偏好于哪个价格带的商品。对于价格带的偏好,构建步骤如下:
取用户历史购买消费记录,统计用户历史购买商品的价格,然后对价格进行区间划分。看用户购买的价格带主要集中在哪个区间中(价格带偏爱应该是一个相对动态的标签,更新频率可能一个月需要定期更,而且选择的时间段也应该是过去某个时间,不应该选择过长时间段。大家想想为什么?)。如何进行价格区间划分?
方法一:按统计学的方法:
1、按分位数进行。例如:25%,50%,75%
2、按等箱原则。划分几等分
3、看数据的分布。
4、……
方法二:按业务知识经验
把价格带按业务经验,行业经验进行划分。
通过数据统计出来,我们可以看用户是否商品单价是否集中的某个区间范围内。例如,某用户购买的商品价格主要集中在30到40这个区间内,根据历史显示可以说,用户可能偏好于购买这个价格带的商品。当未来我们需要做促销商品推荐的时候,可以向该用户重点推荐打折后在这个价格区间的商品。
通过用户购买的价格区间,以及结合商品所归属的品类,可以看这个价格区间在这个品类中属于什么级别的。可以进一步给用户打上:注重品牌、注重高性价比等标签。
例如:如果某个品类商品的价格范围是(5,40],该用户购物商品主要集中(30,40]这个商品价格区间,用户在这个品类的消费上都是最高价格区间,说明这个用户在购买这个品类主要购买的高端商品。这样又可以为这个用户打上在这个品类的消费特征标签:品类高端用户。
案例二:用户流失概率标签
我们经常会听说一个数据: “养一个新客户的成本是维护一个老客户成本的5倍?在利润贡献方面,老用户更是新用户的16倍”
当然这个5倍更应该理解为期间,更应该理解为:相对争取一个新客,更应该花时间与精力在维护好一个老客上。为什么呢?(同学们一起思考一下) 做用户运营的同学对于流失用户主要痛点如下:
1、那如何去给用户打上流失概率的标签?
2、如何及时更新这个流失概率的标签?
3、什么时候应该开始需要给流失用户进行营销?
4、针对不同流失概率的用户是否要设计不一样的策略?
5、对潜在流失用户,应该设计什么样的策略?
6、对不同类型流失特征的用户,应该投入的成本多少?
7、…….
对于老客的维护,首先应该及时知道用户的流失概率多少?随时时间的推移流失概率是否有变动,特别是流失概率高的用户要及时进行营销避免真的流失。
流失概率用大数据中机器学习的方法预测,而且根据用户产生的行为可以实时去计算用户流失概率标签(用户的流失概率应该是动态,是否需要非常高的时效性,还要结合具体开发成本)。通知运营同学根据不同的用户特征,设计好营销策略。当用户满足相应条件时间,会自动促销相应的营销策略,这才是大数据应该有的场景。
我们如何给用户的流失概率打上标签呢?如果你的公司的业务比较稳定,公司的业务有一定周期(这个周期多长,要看你公司的业务模式,是对B还是对C),我们会使用机器学习/数据挖掘的方法来去计算这个概率是比较准确的,如果业务太新,数据积累太少建模型往往不是一个好的选择。
我们还是以电商为案例背景,这个公司的CRM团队,希望知道用户流失的概率,根据流失概率定期对相关的用户进行营销,降低用户的流失率。如何构建这个模型从而打上流失概率标签,主要步骤如下:
业务理解。与业务沟通分析流失用户特征,用户的生命周期定义。例如:多久没有和公司互动或者交易定义为休眼,多久没有交易认为是流失了。
业务分析。流失用户的可能的原因是什么,根据这些原因,相应去找到或者设计预期指标。例如:如果用户有过差评,流失可能性高。用户经常看到公司商品缺货,流失可能性高。
模型构建。设计流失用户的预测模型。根据之前的业务流程,业务知识的梳理,围绕用户设计一系列的指标,如下图所示,会从各个方面进行指标清洗,放到模型中建模。
本篇文章主要让大家对于数据画像建设有一个直观的感觉,后续的文章中,我们将逐一介绍数据画像更细看步骤和过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26