
国家全面倡导数字化,显然是预见了经济发展的大趋势。为此,各大企业积极响应国家号召,紧锣密鼓地部署并推进数字化转型。然而,随着时间的推移,各种挑战和瓶颈逐渐暴露出来,越来越多转型的企业陷入四面楚歌、难以突围的境况。
企业数字化转型往往后劲力量越来越薄弱,无法达到预期效果,问题可能出在根部,所谓根部就是注重数字化人才培养。
从小数据到大数据的分析思路均源于验证性数据分析,因此,业务需求尤为重要,而需求从何而来是由数据分析师所处的行业而定。
数据分析的需求来源包括阅读运营报告、痛点研究、未来战略方向。
谈到运营报告就不得不提及数据库。我们经常将数据库喻为“数据海洋”,其数量和内容之多超出我们的想象。就电商公司而言,数据库装载几千张表是很正常的现象,每张表的数据从几十列到上百列不等,整个数据库至少有几万列数据。一名数据分析师仅仅了解这些字段(基于描述类工作),估计没有一年半载是办不到的。
运营报告包含很多有用字段,凡是能在报告里出现的字段都是经过业务人员过滤并经过几年的持续修改而成的,这恰恰包含了数据分析所需要的统计信息。
如果事先有对业务问题进行总结,那么运营报告中的字段将得到大幅缩减。例如,如果消费者关注商品颜色,那么运营报告需要提及这一字段,并设计相应的营销方案;相反,如果最近业务更加关注客户满意度,那么商品颜色这一字段就用不上了,运营报告自然也不会提及这一字段。由此看来,数据库中只有部分字段能够充分利用起来(通常认为只有不足10% 的字段经常被使用),而其他字段可能暂时还没有用。
(1)因变量y 和自变量x 从何而来?
公司每段时期出现的问题都会呈现在报告中,问题所在之处就是量化y。有了y 后,需要对问题进行归因,而变量x 就是结果y 的归因因素,因此寻找影响因素x 是建模的主要过程。寻找x,不是从数据海洋中搜寻,而是判断运营报告中提到的字段。
理论上说,报告中涉及的字段都有可能成为y 或x,但企业在每段时期暴露的严重问题涉及的字段才最有可能是y,而且y 并不会很多,因为大多数问题,只有几个主导的因素。例如,订单下滑、满意度不佳、活跃度不够等问题的根本原因可能是广告投放失效,那么广告投放就是当前的y。x 是归因的依据。模型是寻找影响因素最快捷的方式,如果能够掌握数据分析方法,那么搜寻x 的过程就简捷多了。
我们是否需要寻找报告之外的x 呢?这实际上涉及数据分析的创新,但创新是发生在夯实的业务基础之上的。也就是只有具备了数据分析技术、业务知识,再加上时间的积累,创新才有望发生。数据分析师职业生涯前2 ~ 3 年,无须寻找这部分x。
(2)搭建模型的前提是业务准备
数据降维(x 的筛选过程)和角色问题确定后,需要做的是模型搭建。数据分析师应该用“点→线→面”的思路来完成业务梳理,进而完成构筑模型所需的一切业务准备。只有把点的问题还原成面的问题,痛点问题才有望被解决。
点的问题就是造成损失的环节。例如,商品导致的业务问题,如毛利润太低、供应商供货问题等。损失之处就是因变量y。然后围绕因变量y 探讨解决方案,这就是自变量x 与因变量y 间的结构关系,y 的问题就是点的问题。线的问题,即自变量x 是如何影响因变量y 的,其重点在寻求归因,即整体结构。如果我们将各部门发生的事件归纳起来,并通过点和线的分析方式将这些事件编织成面的问题,然后使用统计技术控制每个环节,促使业务问题与统计解决方案同步,那么统计方法将得到有效的运用。
企业在某段时间可能会面临某个严重的业务问题,企业所有资源和人力都将用于解决这个问题,数据分析师当然也不例外。企业每个时期的痛点各不相同,问题一般会持续3~6 个月。例如,老客户流失严重,首先需要找到y,如果数据库中没有字段与该问题对应,则需要想办法构建人工字段b,即用商品购买周期的两倍来预判客户流失(这是人工字段)的严重性。有了y 后,要寻找影响因素x,构建客户流失模型。完成模型构建后,在因变量与自变量间归因是不是就自然发生了呢?最终就能找到痛点的真正原因了呢?显然,据此得出的结论过于单薄。
痛点问题是很多问题的综合性表现,且一个模型能解释的信息是有限的。对痛点问题进行归因是环环相套的。
研究痛点仅仅是帮助我们发现归因链中有问题的环节,而此环节必须还原到产品或行为分析的框架中才能有效地归因,否则就会出现“头痛医头”的现象。
企业数字化转型成败还取决于数据分析专业人才的支持,数字化转型需数字化人才,无论高尖端企业还是传统行业,建设数字化人才团队是当务之急。
未来5年,甚至更长时间,拥有具备业务、数据、架构、内部推动、项目管理等综合能力的数字化人才,尤其高效决策的数字化管理思维的人才,是企业决胜千里的关键。
在此期间,建议数据分析师可以做如下事情:
第一,调试模型使“精确”变成精确,以符合当前应用场景。模型判断的准则永远是业务标准,而最了解业务之人当属老板,所以老板确定的方向出错的可能性很小,要相信此锚。
第二,数据分析团队应该适当地转移工作重点,如参与线下业务活动,以了解营销、物流配送、供应商谈判、客服等业务,从而了解业务与数据间的关系,但不要本末倒置。
第三,参加数据分析培训,提升自己。
8月19日直播课,由徐杨老师带领大家学习!
直播内容:
1.纵有千古:数字化的前世今生
2.横有八荒:数字化工作的价值聚集:数据科学
3.前途似海:数字化人才的岗位需求
4.未来可期:如何成为企业需要的数字化人才
扫描海报二维码,免费听课!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13