
机器学习中的线性代数
线性代数作为数学中的一个重要的分支,广发应用在科学与工程中。掌握好线性代数对于理解和从事机器学习算法相关的工作是很有必要的,尤其是对于深度学习而言。因此,在开始介绍深度学习之前,先集中探讨一些必备的线性代数知识。
2.1 标量,向量,矩阵和张量
标量(scalar):一个标量就是一个单独的数。用斜体表示标量,如s∈R
.
向量(vector):一个向量是一列数,我们用粗体的小写名称表示向量。比如x
,将向量x
写成方括号包含的纵柱:
矩阵(matrix):矩阵是二维数组,我们通常赋予矩阵粗体大写变量名称,比如A。如果一个矩阵高度是m,宽度是n,那么说A∈Rm×n。一个矩阵可以表示如下:
张量(tensor):某些情况下,我们会讨论不止维坐标的数组。如果一组数组中的元素分布在若干维坐标的规则网络中,就将其称为张量。用A表示,如张量中坐标为(i,j,k)的元素记作Ai,j,k。
转置(transpose):矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线称为主对角线(main diagonal)。将矩阵A
的转置表示为A⊤
。定义如下:
A=⎡⎣⎢x11x21x31x12x22x32⎤⎦⎥⟹A⊤=[x11x21x21x22x31x32]
2.2 矩阵和向量相乘
矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵A
和B的矩阵乘积(matrix product)是第三个矩阵C。矩阵乘法中A的列必须和B的行数相同。即如果矩阵A的形状是m×n,矩阵B的形状是n×p,那么矩阵C的形状就是m×p
。即
具体的地,其中的乘法操作定义为
矩阵乘积服从分配律
矩阵乘积也服从结合律
注意:矩阵乘积没有交换律
点积(dot product)两个相同维数的向量x
和y的点积可看作是矩阵乘积x⊤y
矩阵乘积的转置
利用向量的乘积是标量,标量的转置是自身的事实,我们可以证明(10)式:
线性方程组
Ax=b
2.3 单位矩阵和逆矩阵
线性代数中提供了矩阵逆(matrix inverse)的工具,使得我们能够解析地求解(11)中的A
.
单位矩阵(identity matrix):任意向量与单位矩阵相乘都不会改变。我们将保持n
维向量不变地单位矩阵记作为In,形式上In∈Rn×n
,
矩阵A的矩阵逆被记作A−1,被定义为如下形式:
(11)式方程组的求解:
方程组的解取决于能否找到一个逆矩阵A−1。接下来讨论逆矩阵A−1的存在的条件。
2.4 线性相关和生成子空间
如果逆矩阵A−1
存在,那么(11)式肯定对于每一个向量b恰好存在一个解。分析方程有多少个解,我们可以看成是A
的列向量的线性组合(linear combination)。
形式上,某个集合中向量的线性组合,是指每个向量乘以对应系数之后的和,即
一组向量的生成空间(span)是原始向量线性组合后所能抵达的点的集合。
线性无关(linearly independent): 如果一组向量中的任意一个向量都不能表示成其他向量的线性组合,那么这组向量被称之为线性无关。
要想使矩阵可逆,首先必须矩阵是一个方阵(square),即m=n
,其次,所有的列向量都是线性无关的。
一个列向量线性相关的方阵被称为奇异的(singular)。
2.5 范数
有时候我们需要衡量一个向量的大小,在机器学习中,我们使用称为范数(norm)的函数来衡量矩阵大小,形式上,Lp
范数如下:
其中p∈R,p≥1。
范数是将向量映射到非负值的函数。直观上来说,向量x
的范数就是衡量从原点到x
的举例。更严格来说,范数满足下列性质的函数:
当p=2
时,L2被称作欧几里得范数(Euclidean norm)。它表示从原点出发到向量x确定的点的欧几里得距离。平方L2范数常被用来衡量向量的大小,因为它便于求导计算(如对向量中每个元素的导数只取决于对应的元素,但是它也有缺陷,即它在原点附近增长得十分缓慢),可以简单用点积x⊤x来计算。
max 范数(max norm):这个范数表示向量中具有最大幅度得元素的绝对值,用L∞
范数表示,期形式为:
x⊤y=||x||2||y||2cosθ
2.6 特殊类型的矩阵和向量
对角矩阵(diagonal matrix)只在主对角线上含有非零元素,其它位置都是零。矩阵D
是对角矩阵,当且仅当∀i≠j,Di,j=0,用diag(v)表示一个对角元素由向量v中元素给定的对角矩阵。
对称(symmetric) 矩阵是任意转置和自己相等的矩阵:
单位向量(unit vector)是具有单位范数(unit norm)的向量:
正交矩阵(orthonormal matrix)是指行向量是标准正交的,列向量是标准正交的方阵:
所以正交矩阵受到关注是因为求逆计算代价小。需要注意正交矩阵的定义。反直觉地,正交矩阵的行向量不仅是正交的,还是标准正交的。对于行向量或列向量互相正交但不是标准正交的矩阵没有对应的专有术语。
2.7 特征分解
许多数学对象可以通过将它们分解成多个组成部分,或者找到它们的一些属性而被更好地理解,这些属性是通用的,而不是由我们选择表示它们的方式引起的。就像我们可以通过分解质因数来发现一些关于整数的真实性质,我们也可以通过分解矩阵来获取一些矩阵表示成数组元素时不明显的函数性质。
特征分解(eigendecomposition)是使用最广的矩阵分解之一,即我们将矩阵分解成一组特征向量和特征值。
方阵A
的特征向量(eigenvector)是指与A相乘后相当于对该向量进行缩放的非零向量v:
如果v
是A的特征向量,那么任何放缩后的向量sv(s∈R,s≠0)也是A的特征向量并且其与\bf v 有相同的特征值。所以我们通常只考虑单位特征向量。
假设矩阵A
有n个线性无关的特征向量{v(1),v(2),...,v(n)},对应着的特征值{λ1,λ2,...,λn}不是每一个矩阵都可以分解成特征值和特征向量,在某些情况下,特征分解会涉及到复数,而非实数。在本书的机器学习学习中,我们只讨论一类简单分解的矩阵。具体就是,每个实对称矩阵都可以分解为实特征向量和实特征值:
2.8 迹运算
迹运算返回的是矩阵对角元素的和:
标量的迹是它本身:a=Tr(a)。
2.9 行列式
行列式,记作det(A)
,是一个将方阵A映射到实数的函数。行列式等于矩阵特征值的乘积。行列式的绝对值可以被认为是衡量矩阵相乘后空间扩大或者缩小了多少。如果行列式是0, 那么空间至少沿着某一维完全收缩了,使其失去了所有的体积。如果行列式是1, 那么矩阵相乘没有改变空间体积。
总结
以上是在机器学习过程中必须了解和掌握的有关线性代数的知识
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28