京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的线性代数
线性代数作为数学中的一个重要的分支,广发应用在科学与工程中。掌握好线性代数对于理解和从事机器学习算法相关的工作是很有必要的,尤其是对于深度学习而言。因此,在开始介绍深度学习之前,先集中探讨一些必备的线性代数知识。
2.1 标量,向量,矩阵和张量
标量(scalar):一个标量就是一个单独的数。用斜体表示标量,如s∈R
.
向量(vector):一个向量是一列数,我们用粗体的小写名称表示向量。比如x
,将向量x
写成方括号包含的纵柱:
矩阵(matrix):矩阵是二维数组,我们通常赋予矩阵粗体大写变量名称,比如A。如果一个矩阵高度是m,宽度是n,那么说A∈Rm×n。一个矩阵可以表示如下:
张量(tensor):某些情况下,我们会讨论不止维坐标的数组。如果一组数组中的元素分布在若干维坐标的规则网络中,就将其称为张量。用A表示,如张量中坐标为(i,j,k)的元素记作Ai,j,k。
转置(transpose):矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线称为主对角线(main diagonal)。将矩阵A
的转置表示为A⊤
。定义如下:
A=⎡⎣⎢x11x21x31x12x22x32⎤⎦⎥⟹A⊤=[x11x21x21x22x31x32]
2.2 矩阵和向量相乘
矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵A
和B的矩阵乘积(matrix product)是第三个矩阵C。矩阵乘法中A的列必须和B的行数相同。即如果矩阵A的形状是m×n,矩阵B的形状是n×p,那么矩阵C的形状就是m×p
。即
具体的地,其中的乘法操作定义为
矩阵乘积服从分配律
矩阵乘积也服从结合律
注意:矩阵乘积没有交换律
点积(dot product)两个相同维数的向量x
和y的点积可看作是矩阵乘积x⊤y
矩阵乘积的转置
利用向量的乘积是标量,标量的转置是自身的事实,我们可以证明(10)式:
线性方程组
Ax=b
2.3 单位矩阵和逆矩阵
线性代数中提供了矩阵逆(matrix inverse)的工具,使得我们能够解析地求解(11)中的A
.
单位矩阵(identity matrix):任意向量与单位矩阵相乘都不会改变。我们将保持n
维向量不变地单位矩阵记作为In,形式上In∈Rn×n
,
矩阵A的矩阵逆被记作A−1,被定义为如下形式:
(11)式方程组的求解:
方程组的解取决于能否找到一个逆矩阵A−1。接下来讨论逆矩阵A−1的存在的条件。
2.4 线性相关和生成子空间
如果逆矩阵A−1
存在,那么(11)式肯定对于每一个向量b恰好存在一个解。分析方程有多少个解,我们可以看成是A
的列向量的线性组合(linear combination)。
形式上,某个集合中向量的线性组合,是指每个向量乘以对应系数之后的和,即
一组向量的生成空间(span)是原始向量线性组合后所能抵达的点的集合。
线性无关(linearly independent): 如果一组向量中的任意一个向量都不能表示成其他向量的线性组合,那么这组向量被称之为线性无关。
要想使矩阵可逆,首先必须矩阵是一个方阵(square),即m=n
,其次,所有的列向量都是线性无关的。
一个列向量线性相关的方阵被称为奇异的(singular)。
2.5 范数
有时候我们需要衡量一个向量的大小,在机器学习中,我们使用称为范数(norm)的函数来衡量矩阵大小,形式上,Lp
范数如下:
其中p∈R,p≥1。
范数是将向量映射到非负值的函数。直观上来说,向量x
的范数就是衡量从原点到x
的举例。更严格来说,范数满足下列性质的函数:
当p=2
时,L2被称作欧几里得范数(Euclidean norm)。它表示从原点出发到向量x确定的点的欧几里得距离。平方L2范数常被用来衡量向量的大小,因为它便于求导计算(如对向量中每个元素的导数只取决于对应的元素,但是它也有缺陷,即它在原点附近增长得十分缓慢),可以简单用点积x⊤x来计算。
max 范数(max norm):这个范数表示向量中具有最大幅度得元素的绝对值,用L∞
范数表示,期形式为:
x⊤y=||x||2||y||2cosθ
2.6 特殊类型的矩阵和向量
对角矩阵(diagonal matrix)只在主对角线上含有非零元素,其它位置都是零。矩阵D
是对角矩阵,当且仅当∀i≠j,Di,j=0,用diag(v)表示一个对角元素由向量v中元素给定的对角矩阵。
对称(symmetric) 矩阵是任意转置和自己相等的矩阵:
单位向量(unit vector)是具有单位范数(unit norm)的向量:
正交矩阵(orthonormal matrix)是指行向量是标准正交的,列向量是标准正交的方阵:
所以正交矩阵受到关注是因为求逆计算代价小。需要注意正交矩阵的定义。反直觉地,正交矩阵的行向量不仅是正交的,还是标准正交的。对于行向量或列向量互相正交但不是标准正交的矩阵没有对应的专有术语。
2.7 特征分解
许多数学对象可以通过将它们分解成多个组成部分,或者找到它们的一些属性而被更好地理解,这些属性是通用的,而不是由我们选择表示它们的方式引起的。就像我们可以通过分解质因数来发现一些关于整数的真实性质,我们也可以通过分解矩阵来获取一些矩阵表示成数组元素时不明显的函数性质。
特征分解(eigendecomposition)是使用最广的矩阵分解之一,即我们将矩阵分解成一组特征向量和特征值。
方阵A
的特征向量(eigenvector)是指与A相乘后相当于对该向量进行缩放的非零向量v:
如果v
是A的特征向量,那么任何放缩后的向量sv(s∈R,s≠0)也是A的特征向量并且其与\bf v 有相同的特征值。所以我们通常只考虑单位特征向量。
假设矩阵A
有n个线性无关的特征向量{v(1),v(2),...,v(n)},对应着的特征值{λ1,λ2,...,λn}不是每一个矩阵都可以分解成特征值和特征向量,在某些情况下,特征分解会涉及到复数,而非实数。在本书的机器学习学习中,我们只讨论一类简单分解的矩阵。具体就是,每个实对称矩阵都可以分解为实特征向量和实特征值:
2.8 迹运算
迹运算返回的是矩阵对角元素的和:
标量的迹是它本身:a=Tr(a)。
2.9 行列式
行列式,记作det(A)
,是一个将方阵A映射到实数的函数。行列式等于矩阵特征值的乘积。行列式的绝对值可以被认为是衡量矩阵相乘后空间扩大或者缩小了多少。如果行列式是0, 那么空间至少沿着某一维完全收缩了,使其失去了所有的体积。如果行列式是1, 那么矩阵相乘没有改变空间体积。
总结
以上是在机器学习过程中必须了解和掌握的有关线性代数的知识
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27