
作者:丁点helper
来源:丁点帮你
线性回归,可能是统计学上运用最广泛的一类方法了,之所以说它是一类方法,是因为它包括了我们熟知的各种模型:简单线性回归、多重线性回归、Logistic回归等等。
线性回归运用这么广泛很大程度在于它的内在逻辑十分简单。一般情况下,就是找Y的影响因素或者说是衡量自变量(X)对因变量(Y)的影响程度,即便不理解其中的数学计算也可以很容易地凭借各种软件找到我们想要的结果。
确实如此,线性回归,尤其是一般线性模型(一个Y,多个X)使用起来没什么障碍,但大家是否完全理解清楚了所有应该掌握的内容(非数学计算)可能有待思考,这个系列的文章我们以“线性回归”为主题,希望能让大家对这个问题的认识能再全面一丁点。
回归一词的来源
初学的小伙伴有没有思考过,为什么叫“回归”?
回归,这个词,英文叫“Regression”,最早出现在1886年英国遗传学家Francis Galton发表的一篇研究身高的论文(”Regression towards mediocrity in hereditary stature”),他发现子女的身高会向整个群体身高的均值回归。
什么叫均值回归?
大家是否想过人类生活繁衍了无数代,但总体来看,成年男子的身高并没有发生太大的变化,基本稳定在1米6至1米8(暂不考虑人种差异)。
这种现象很大程度就是因为存在均值回归,即身高较高的父母虽然子女也比较高,但往往比父母矮;身高较矮的父母,其子女的身高往往比父母高。
所以,这里的均值回归,就是指子代的身高会向整个人类的平均身高靠拢的趋势。
换句话讲:姚明的孩子大概率会比姚明矮、潘长江的孩子大概率会比潘长江高。
因此,正是因为身高的均值回归现象(向整个群体的平均身高回归),整个人类的身高水平才能比较均衡。
倘若,个子高的父亲生的孩子比自己还高,而个子矮的父亲生的孩子比自己还矮,那么整个人类的身高就会呈现“两极分化”的态势:要么特别高、要么特别矮。
由此来看,最早的“回归”实际上描述的是一种“现象“,即人们的身高不会无限制地上升或降低,而是会朝着平均水平回归。
当然,这种现象并不仅限于“身高”,我们身边的很多现象都有向均值回归的趋势。比如考试成绩,一般来讲,成绩很难持续提升或下降,而是大概率呈现波动状态,维持在一个平均水平。
而现如今,回归更多是指代一种“方法”,即研究两个或两个以上变量相关关系的方法。以一个变量为因变量(Y),另一个或一些变量为自变量(X),构建一个方程——左边为Y,右边为X,通过计算X的系数来估计X对Y的影响。
比如通过父母的平均身高来估计子女的身高。我们以父母的平均身高为“X”,以孩子的身高为“Y”,然后探讨这两个变量之间的线性关系,这就是一个典型的回归模型。
Francis Galton的研究——父母平均身高与子女身高的回归线
区分总体和样本
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
因为无论做哪种统计分析,我们获得数据几乎永远都是”样本数据“:统计量的大小仅仅反映了这组数据的情况。
比如,我们想考察”教育年限(X)“与”收入(Y)“是否存在相关关系。通过抽样,获得了两组数据(例如1000名对象的教育年限和目前的月收入),得出相关系数为0.8。
但是,这个相关系数仅仅反映了这1000名对象的情况,对于所有人(即我们研究的总体),这个相关关系是否仍然成立?
所以,我们必须要进行检验,即相关系数的假设检验。因为我们关心的是相关关系的有无,所以,最主要的是检验总体相关系数是否为0(H0假设)。因为”0“代表无关,只要不为”0“,就证明总体数据的相关关系存在。
同样的,我们也可以用获得的这1000名对象的数据,做回归分析,以”教育年限“(X)为自变量,以”月收入“(Y)为因变量,得到回归方程:Y = 2000+200X+ε
这里,我们最关注的是X的回归系数——200。
这里的200,意味着教育程度每增加一年,月收入增加200元。
但是,这个关系也只是反映了这1000名研究对象的情况,对于所有人,是否教育程度每增加一年,月收入都会增加200元?
这就有待进行假设检验,同样我们也是关注:总体回归系数是否为0。
因此,在接触回归的第一步,我们需要明确,自己手头上数据所获得的回归方程仅仅是一个样本的情况。
如果重复抽样,再进行相同的回归分析,就会得到另一个回归方程。
也就是说,目前得到的这个回归方程(以及其中的回归系数),它是可变的,是一个样本值,随着样本的变化而变化。也正因为此,我们才需要对回归系数进行检验。
实际上,教科书对总体回归和样本回归也有着清晰地区分,就连方程的术语和符号也不例外:
所以,”戴帽子“(^)的都是样本值,或者说是总体的估计值。
理清了这一点,才能更好地搞懂回归系数的假设检验等问题。
最后出个题目考考大家,当我们做回归系数(β)的假设检验时,下面A、B两种写法哪种正确:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13