
作者:丁点helper
来源:丁点帮你
线性回归,可能是统计学上运用最广泛的一类方法了,之所以说它是一类方法,是因为它包括了我们熟知的各种模型:简单线性回归、多重线性回归、Logistic回归等等。
线性回归运用这么广泛很大程度在于它的内在逻辑十分简单。一般情况下,就是找Y的影响因素或者说是衡量自变量(X)对因变量(Y)的影响程度,即便不理解其中的数学计算也可以很容易地凭借各种软件找到我们想要的结果。
确实如此,线性回归,尤其是一般线性模型(一个Y,多个X)使用起来没什么障碍,但大家是否完全理解清楚了所有应该掌握的内容(非数学计算)可能有待思考,这个系列的文章我们以“线性回归”为主题,希望能让大家对这个问题的认识能再全面一丁点。
回归一词的来源
初学的小伙伴有没有思考过,为什么叫“回归”?
回归,这个词,英文叫“Regression”,最早出现在1886年英国遗传学家Francis Galton发表的一篇研究身高的论文(”Regression towards mediocrity in hereditary stature”),他发现子女的身高会向整个群体身高的均值回归。
什么叫均值回归?
大家是否想过人类生活繁衍了无数代,但总体来看,成年男子的身高并没有发生太大的变化,基本稳定在1米6至1米8(暂不考虑人种差异)。
这种现象很大程度就是因为存在均值回归,即身高较高的父母虽然子女也比较高,但往往比父母矮;身高较矮的父母,其子女的身高往往比父母高。
所以,这里的均值回归,就是指子代的身高会向整个人类的平均身高靠拢的趋势。
换句话讲:姚明的孩子大概率会比姚明矮、潘长江的孩子大概率会比潘长江高。
因此,正是因为身高的均值回归现象(向整个群体的平均身高回归),整个人类的身高水平才能比较均衡。
倘若,个子高的父亲生的孩子比自己还高,而个子矮的父亲生的孩子比自己还矮,那么整个人类的身高就会呈现“两极分化”的态势:要么特别高、要么特别矮。
由此来看,最早的“回归”实际上描述的是一种“现象“,即人们的身高不会无限制地上升或降低,而是会朝着平均水平回归。
当然,这种现象并不仅限于“身高”,我们身边的很多现象都有向均值回归的趋势。比如考试成绩,一般来讲,成绩很难持续提升或下降,而是大概率呈现波动状态,维持在一个平均水平。
而现如今,回归更多是指代一种“方法”,即研究两个或两个以上变量相关关系的方法。以一个变量为因变量(Y),另一个或一些变量为自变量(X),构建一个方程——左边为Y,右边为X,通过计算X的系数来估计X对Y的影响。
比如通过父母的平均身高来估计子女的身高。我们以父母的平均身高为“X”,以孩子的身高为“Y”,然后探讨这两个变量之间的线性关系,这就是一个典型的回归模型。
Francis Galton的研究——父母平均身高与子女身高的回归线
区分总体和样本
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
因为无论做哪种统计分析,我们获得数据几乎永远都是”样本数据“:统计量的大小仅仅反映了这组数据的情况。
比如,我们想考察”教育年限(X)“与”收入(Y)“是否存在相关关系。通过抽样,获得了两组数据(例如1000名对象的教育年限和目前的月收入),得出相关系数为0.8。
但是,这个相关系数仅仅反映了这1000名对象的情况,对于所有人(即我们研究的总体),这个相关关系是否仍然成立?
所以,我们必须要进行检验,即相关系数的假设检验。因为我们关心的是相关关系的有无,所以,最主要的是检验总体相关系数是否为0(H0假设)。因为”0“代表无关,只要不为”0“,就证明总体数据的相关关系存在。
同样的,我们也可以用获得的这1000名对象的数据,做回归分析,以”教育年限“(X)为自变量,以”月收入“(Y)为因变量,得到回归方程:Y = 2000+200X+ε
这里,我们最关注的是X的回归系数——200。
这里的200,意味着教育程度每增加一年,月收入增加200元。
但是,这个关系也只是反映了这1000名研究对象的情况,对于所有人,是否教育程度每增加一年,月收入都会增加200元?
这就有待进行假设检验,同样我们也是关注:总体回归系数是否为0。
因此,在接触回归的第一步,我们需要明确,自己手头上数据所获得的回归方程仅仅是一个样本的情况。
如果重复抽样,再进行相同的回归分析,就会得到另一个回归方程。
也就是说,目前得到的这个回归方程(以及其中的回归系数),它是可变的,是一个样本值,随着样本的变化而变化。也正因为此,我们才需要对回归系数进行检验。
实际上,教科书对总体回归和样本回归也有着清晰地区分,就连方程的术语和符号也不例外:
所以,”戴帽子“(^)的都是样本值,或者说是总体的估计值。
理清了这一点,才能更好地搞懂回归系数的假设检验等问题。
最后出个题目考考大家,当我们做回归系数(β)的假设检验时,下面A、B两种写法哪种正确:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11