
作者:丁点helper
来源:丁点帮你
线性回归,可能是统计学上运用最广泛的一类方法了,之所以说它是一类方法,是因为它包括了我们熟知的各种模型:简单线性回归、多重线性回归、Logistic回归等等。
线性回归运用这么广泛很大程度在于它的内在逻辑十分简单。一般情况下,就是找Y的影响因素或者说是衡量自变量(X)对因变量(Y)的影响程度,即便不理解其中的数学计算也可以很容易地凭借各种软件找到我们想要的结果。
确实如此,线性回归,尤其是一般线性模型(一个Y,多个X)使用起来没什么障碍,但大家是否完全理解清楚了所有应该掌握的内容(非数学计算)可能有待思考,这个系列的文章我们以“线性回归”为主题,希望能让大家对这个问题的认识能再全面一丁点。
回归一词的来源
初学的小伙伴有没有思考过,为什么叫“回归”?
回归,这个词,英文叫“Regression”,最早出现在1886年英国遗传学家Francis Galton发表的一篇研究身高的论文(”Regression towards mediocrity in hereditary stature”),他发现子女的身高会向整个群体身高的均值回归。
什么叫均值回归?
大家是否想过人类生活繁衍了无数代,但总体来看,成年男子的身高并没有发生太大的变化,基本稳定在1米6至1米8(暂不考虑人种差异)。
这种现象很大程度就是因为存在均值回归,即身高较高的父母虽然子女也比较高,但往往比父母矮;身高较矮的父母,其子女的身高往往比父母高。
所以,这里的均值回归,就是指子代的身高会向整个人类的平均身高靠拢的趋势。
换句话讲:姚明的孩子大概率会比姚明矮、潘长江的孩子大概率会比潘长江高。
因此,正是因为身高的均值回归现象(向整个群体的平均身高回归),整个人类的身高水平才能比较均衡。
倘若,个子高的父亲生的孩子比自己还高,而个子矮的父亲生的孩子比自己还矮,那么整个人类的身高就会呈现“两极分化”的态势:要么特别高、要么特别矮。
由此来看,最早的“回归”实际上描述的是一种“现象“,即人们的身高不会无限制地上升或降低,而是会朝着平均水平回归。
当然,这种现象并不仅限于“身高”,我们身边的很多现象都有向均值回归的趋势。比如考试成绩,一般来讲,成绩很难持续提升或下降,而是大概率呈现波动状态,维持在一个平均水平。
而现如今,回归更多是指代一种“方法”,即研究两个或两个以上变量相关关系的方法。以一个变量为因变量(Y),另一个或一些变量为自变量(X),构建一个方程——左边为Y,右边为X,通过计算X的系数来估计X对Y的影响。
比如通过父母的平均身高来估计子女的身高。我们以父母的平均身高为“X”,以孩子的身高为“Y”,然后探讨这两个变量之间的线性关系,这就是一个典型的回归模型。
Francis Galton的研究——父母平均身高与子女身高的回归线
区分总体和样本
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
因为无论做哪种统计分析,我们获得数据几乎永远都是”样本数据“:统计量的大小仅仅反映了这组数据的情况。
比如,我们想考察”教育年限(X)“与”收入(Y)“是否存在相关关系。通过抽样,获得了两组数据(例如1000名对象的教育年限和目前的月收入),得出相关系数为0.8。
但是,这个相关系数仅仅反映了这1000名对象的情况,对于所有人(即我们研究的总体),这个相关关系是否仍然成立?
所以,我们必须要进行检验,即相关系数的假设检验。因为我们关心的是相关关系的有无,所以,最主要的是检验总体相关系数是否为0(H0假设)。因为”0“代表无关,只要不为”0“,就证明总体数据的相关关系存在。
同样的,我们也可以用获得的这1000名对象的数据,做回归分析,以”教育年限“(X)为自变量,以”月收入“(Y)为因变量,得到回归方程:Y = 2000+200X+ε
这里,我们最关注的是X的回归系数——200。
这里的200,意味着教育程度每增加一年,月收入增加200元。
但是,这个关系也只是反映了这1000名研究对象的情况,对于所有人,是否教育程度每增加一年,月收入都会增加200元?
这就有待进行假设检验,同样我们也是关注:总体回归系数是否为0。
因此,在接触回归的第一步,我们需要明确,自己手头上数据所获得的回归方程仅仅是一个样本的情况。
如果重复抽样,再进行相同的回归分析,就会得到另一个回归方程。
也就是说,目前得到的这个回归方程(以及其中的回归系数),它是可变的,是一个样本值,随着样本的变化而变化。也正因为此,我们才需要对回归系数进行检验。
实际上,教科书对总体回归和样本回归也有着清晰地区分,就连方程的术语和符号也不例外:
所以,”戴帽子“(^)的都是样本值,或者说是总体的估计值。
理清了这一点,才能更好地搞懂回归系数的假设检验等问题。
最后出个题目考考大家,当我们做回归系数(β)的假设检验时,下面A、B两种写法哪种正确:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25