
一、线性支持向量机的概念
线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机,通过求解对应的凸二次规划问题,也同样求得分离超平面
以及相应的分类决策函数
二、与线性可分支持向量机的比较
线性支持向量机与线性可分支持向量机最大的不同就是在处理的问题上,线性可分支持向量机处理的是严格线性可分的数据集,而线性支持向量机处理的是线性不可分的数据集,然而,在基本的原理上他们却有着想通之处。这里的线性不可分是指数据集中存在某些点不能满足线性可分支持向量机的约束条件:。
具体来讲,对于特征空间上的训练数据集,且不是线性可分的,即存在某些特异点不满足的约束条件,若将这些特异点去除,那么剩下的数据点是线性可分的,由此可见,线性可分支持向量机是线性支持向量机的特殊情况。为了解决这样的问题,对每个样本点
引入一个松弛变量
,且,则上述的约束条件被放宽,即:
此时目标函数变为:
其中称为惩罚参数,且。在线性支持向量机中加入了惩罚项,与线性可分支持向量的应间隔最大化相对应,在线性支持向量机中称为软间隔最大化。数据分析师培训
三、线性支持向量机的原理
由上所述,我们得到线性支持向量机的原始问题:
接下来的问题就变成如何求解这样一个最优化问题(称为原始问题)。引入拉格朗日函数:
其中,。
此时,原始问题即变成
利用拉格朗日函数的对偶性,将问题变成一个极大极小优化问题:
首先求解,将拉格朗日函数分别对求偏导,并令其为0:
即为:
将其带入拉格朗日函数,即得:
第二步,求,即求:
由可得
,因为在第二步求极大值的过程中,函数只与a有关。
将上述的极大值为题转化为极小值问题:
这就是原始问题的对偶问题。
四、线性支持向量机的过程
1、设置惩罚参数,并求解对偶问题:
假设求得的最优解为;
2、计算原始问题的最优解:
选择中满足
的分量,计算:
3、求分离超平面和分类决策函数:
分离超平面为:
分类决策函数为:
五、实验的仿真
1、解决线性可分问题
与博文“简单易学的机器学习算法——线性可分支持向量机”实验一样,其中取中的最大值。
MATLAB代码为
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
y = [1,1,-1];%标签
A = [X,y'];
m = size(A);%得到训练数据的大小
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
axis([0,7,0,7])
hold off
实验结果为:
(线性可分问题的分离超平面)
2、解决线性不可分问题
问题为:
(线性不可分问题)
MATLAB代码:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSet.txt');
% 处理数据的标签
m = size(A);%得到训练数据的大小
for i = 1:m(1,1)
A(i,m(1,2)) = A(i,m(1,2))*2-1;
end
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
% C = mean(x);
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [-4,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
hold off
实验结果为:
(线性不可分问题的分离超平面)
注:这里的的取值很重要,的取值将决定分类结果的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18