
基础准备
两样本推断性统计基础:两样本估计和假设检验基础。
通过对比单样本估计和假设检验的学习,可以列出独立两样本均值差的估计和假设检验在不同情况的置信区间公式,有以下总结:
两样本的t分布
t分布在单样本估计和假设检验要求:正态总体,可以使用t分布进行两样本估计和假设检验;两样本估计和假设检验要求:除了正态总体外,还要假设两总体方差相等(方差齐性)才能使用t分布,原因是两总体方差相等,才能得到自由度为n1+n2-2的均值差抽样分布的方差,推导公式如下:
参照上表,标准差已知的正态分布总体均值差抽样分布为正态分布,可以得到独立样本均值差的置信区间,置信区间公式推导过程如下:
范例1:一位森林学家想知道还把高度对红杉树高度的影响。他测量了海平面上100棵成树的高度(总体1,标准差已知为30英尺),高度均值为320英尺;海拔3000英尺的73棵成树的高度(总体2,标准差已知为45英尺),高度均值为255英尺;问:两总体均值差的95%置信区间是多少?
解:不同海拔的红杉树的高度可以认为是正态分布的,总体方差已知,而且不同海拔的红杉树是独立样本,可以直接用上面置信区间公式计算,过程如下:
和单样本假设检验一样(单样本的假设检验),两样本假设检验问题也有一对统计假设:零假设和对立假设;同样也存在两侧和单侧假设检验,而且单侧假设检验又分为右侧检验和左侧检验。两样本假设检验中,一般把零假设为两均值差为0,对立假设根据题意选择双侧假设或是单侧假设;两样本假设检验的步骤和单样本假设检验一样。
从上表可知:标准差已知的正态总体均值差的抽样分布为正态分布,进行标准正态变换后可以假设检验,过程见下方范例。
范例2:独立随机样本取自均值未知,标准差已知的两个正态分布总体,第一个总体,标准差为0.73,样本容量为25,样本均值为7.3;第二个总体,标准差为0.89,样本容量为20,样本均值为6.7;在显著水平为0.01下作两总体均值差等于0的右尾检验。
均值差的置信区间:标准差未知,但假定相等的正态分布总体的独立小样本(小于30)
如上表所示,标准差未知,但假定相等的正态分布总体小样本,均值差的抽样分布符合t分布,可用表中置信区间计算公式,计算过程见范例。
范例3:为研究睡眠对记忆力的影响,一位心理学家在两种条件下对人群进行试验,内容是有关北极野外生活的纪实电影的细节回忆,这两种条件是:(1)电影在早上7点反映,被测人晚上睡眠正常,第二天晚上给他们50个有关电影的多项选择题;(2)电影早7点反映,被测人白天情况如常,未睡觉,同一天晚上7点给他们50个问题,样本是独立的,每组为15人,结果为:第1组,均值为37.2个正确,方差为3.33;第2组,均值为35.6个正确,方差为3.24。假定两种条件下的总体都是正态分布,且方差相等,计算总体均值差95%的置信区间。
均值差的假设检验:标准差未知,但假定相等的正态分布总体的独立小样本(小于30)
同上(置信区间),该条件下的假设检验适用t分布。
范例4:为检测某种激素对失眠的影响,一个医生给两组临睡前的病人服用不同剂量的激素,然后测量他们从服药到入睡的时间,第一组服用的是5mg的剂量,第二组服用的是15mg的剂量,样本是独立的,结果为:第一组,样本容量为10人,均值为14.8min,方差为4.36;第二组,样本容量为12人,均值为10.2min,方差为4.66。假定两个条件下的总体是正态分布,并且有同方差,在显著水平0.02下,用临界决策规则作零假设:两总体均值差为0的双侧检验。
均值差的置信区间:标准差未知的任何总体分布的独立大样本(大于等于30)
对于独立大样本(样本容量大于等于30),均值差的抽样分布是正态分布,可以转为标准正态分布,进而使用Z分布进行均值差区间估计;当然,如果是正态总体且方差是齐性的,也可以使用t分布。
范例5:一位机场管理人员让你估计一下,两条航线中哪一条更遵守他们的计划起飞时间。对每条航线你随机测量了30架飞机的计划起飞和实际起飞时间差。现在不能假定时间总体是正态分布,或是方差齐性的,独立样本结果:航线1,平均时间差12.4min,标准差3.72;航线2,平均时间差11.7min,标准差3.6。问两条航线平均时间差的差值的99%置信区间是什么?
均值差的假设检验:标准差未知的任何总体分布的独立大样本(大于等于30)
同上的解释:对于独立大样本(样本容量大于等于30),均值差的抽样分布是正态分布,可以转为标准正态分布,进而使用Z分布进行均值差区间估计;当然,如果是正态总体且方差是齐性的,也可以使用t分布。
范例6:一位机场管理人员让你估计一下,两条航线中哪一条更遵守他们的计划起飞时间。对每条航线你随机测量了30架飞机的计划起飞和实际起飞时间差。现在不能假定时间总体是正态分布,或是方差齐性的,独立样本结果:航线1,平均时间差12.4min,标准差3.72;航线2,平均时间差11.7min,标准差3.6。在0.01显著水平下,用临界值决策规则作零假设:两条航线延误时间的差等于0的双侧检验。
均值差的置信区间:成对样本
对于成对样本,需要用到不同于上面描述的独立两样本的估计方法,而应该用成对样本模型,模型推导如下:
范例7:某个医学研究中心研究一种激素用量对于睡眠的影响。为了避免随机选择的偶然性(例如用15mg的病人比5mg的年轻)对试验结果的影响,于是根据可能影响睡眠的年龄、性别、健康情况一起其它因素选择了12对病人,然后将每对病人随机分配到5mg组和15mg组。对每个病人测量从服药到入睡的时间,然后计算每对的时间差,结果是:4.9,4.6,5.1,4.5,7.1,3.2,5.4,3.9,5.9,4.6,2.9,4.7。由这些数据计算5mg组合15mg组的95%置信区间,假定差值的总体是正态分布。
均值差的假设检验:成对样本
同上,成对样本均值差的假设检验也用t分布。
范例8:某个医学研究中心研究一种激素用量对于睡眠的影响。为了避免随机选择的偶然性(例如用15mg的病人比5mg的年轻)对试验结果的影响,于是根据可能影响睡眠的年龄、性别、健康情况一起其它因素选择了12对病人,然后将每对病人随机分配到5mg组和15mg组。对每个病人测量从服药到入睡的时间,然后计算每对的时间差,结果是:4.9,4.6,5.1,4.5,7.1,3.2,5.4,3.9,5.9,4.6,2.9,4.7。在显著水平0.05下,用临界值决策桂策做零假设:两总体均值差为0的右侧检验,假设差值总体是正态分布。
方差比
上一篇两样本估计和假设检验基础讲过,两样本均值估计和假设检验用均值差表示,而两样本方差估计和假设检验则应该用方差比。这里就引出了F分布(F分布回顾:两样本估计和假设检验基础)。
方差比的置信区间:参数未知的正态分布总体的独立样本
范例9:为检测某种激素对失眠的影响,一个医生给两组临睡前的病人服用不同剂量的激素,然后测量他们从服药到入睡的时间,第一组服用的是5mg的剂量,第二组服用的是15mg的剂量,样本是独立的,结果为:第一组,样本容量为10人,均值为14.8min,方差为4.36;第二组,样本容量为12人,均值为10.2min,方差为4.66。假定两种条件下的总体都是正态分布,计算量总体方差比的90%置信区间。
范例10:为检测某种激素对失眠的影响,一个医生给两组临睡前的病人服用不同剂量的激素,然后测量他们从服药到入睡的时间,第一组服用的是5mg的剂量,第二组服用的是15mg的剂量,样本是独立的,结果为:第一组,样本容量为10人,均值为14.8min,方差为4.36;第二组,样本容量为12人,均值为10.2min,方差为4.66。假定两总体方差齐性,在0.01显著水平下,用临界值决策规则作这个假定的双侧检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27