
基础准备
两样本推断性统计基础:两样本估计和假设检验基础。
通过对比单样本估计和假设检验的学习,可以列出独立两样本均值差的估计和假设检验在不同情况的置信区间公式,有以下总结:
两样本的t分布
t分布在单样本估计和假设检验要求:正态总体,可以使用t分布进行两样本估计和假设检验;两样本估计和假设检验要求:除了正态总体外,还要假设两总体方差相等(方差齐性)才能使用t分布,原因是两总体方差相等,才能得到自由度为n1+n2-2的均值差抽样分布的方差,推导公式如下:
参照上表,标准差已知的正态分布总体均值差抽样分布为正态分布,可以得到独立样本均值差的置信区间,置信区间公式推导过程如下:
范例1:一位森林学家想知道还把高度对红杉树高度的影响。他测量了海平面上100棵成树的高度(总体1,标准差已知为30英尺),高度均值为320英尺;海拔3000英尺的73棵成树的高度(总体2,标准差已知为45英尺),高度均值为255英尺;问:两总体均值差的95%置信区间是多少?
解:不同海拔的红杉树的高度可以认为是正态分布的,总体方差已知,而且不同海拔的红杉树是独立样本,可以直接用上面置信区间公式计算,过程如下:
和单样本假设检验一样(单样本的假设检验),两样本假设检验问题也有一对统计假设:零假设和对立假设;同样也存在两侧和单侧假设检验,而且单侧假设检验又分为右侧检验和左侧检验。两样本假设检验中,一般把零假设为两均值差为0,对立假设根据题意选择双侧假设或是单侧假设;两样本假设检验的步骤和单样本假设检验一样。
从上表可知:标准差已知的正态总体均值差的抽样分布为正态分布,进行标准正态变换后可以假设检验,过程见下方范例。
范例2:独立随机样本取自均值未知,标准差已知的两个正态分布总体,第一个总体,标准差为0.73,样本容量为25,样本均值为7.3;第二个总体,标准差为0.89,样本容量为20,样本均值为6.7;在显著水平为0.01下作两总体均值差等于0的右尾检验。
均值差的置信区间:标准差未知,但假定相等的正态分布总体的独立小样本(小于30)
如上表所示,标准差未知,但假定相等的正态分布总体小样本,均值差的抽样分布符合t分布,可用表中置信区间计算公式,计算过程见范例。
范例3:为研究睡眠对记忆力的影响,一位心理学家在两种条件下对人群进行试验,内容是有关北极野外生活的纪实电影的细节回忆,这两种条件是:(1)电影在早上7点反映,被测人晚上睡眠正常,第二天晚上给他们50个有关电影的多项选择题;(2)电影早7点反映,被测人白天情况如常,未睡觉,同一天晚上7点给他们50个问题,样本是独立的,每组为15人,结果为:第1组,均值为37.2个正确,方差为3.33;第2组,均值为35.6个正确,方差为3.24。假定两种条件下的总体都是正态分布,且方差相等,计算总体均值差95%的置信区间。
均值差的假设检验:标准差未知,但假定相等的正态分布总体的独立小样本(小于30)
同上(置信区间),该条件下的假设检验适用t分布。
范例4:为检测某种激素对失眠的影响,一个医生给两组临睡前的病人服用不同剂量的激素,然后测量他们从服药到入睡的时间,第一组服用的是5mg的剂量,第二组服用的是15mg的剂量,样本是独立的,结果为:第一组,样本容量为10人,均值为14.8min,方差为4.36;第二组,样本容量为12人,均值为10.2min,方差为4.66。假定两个条件下的总体是正态分布,并且有同方差,在显著水平0.02下,用临界决策规则作零假设:两总体均值差为0的双侧检验。
均值差的置信区间:标准差未知的任何总体分布的独立大样本(大于等于30)
对于独立大样本(样本容量大于等于30),均值差的抽样分布是正态分布,可以转为标准正态分布,进而使用Z分布进行均值差区间估计;当然,如果是正态总体且方差是齐性的,也可以使用t分布。
范例5:一位机场管理人员让你估计一下,两条航线中哪一条更遵守他们的计划起飞时间。对每条航线你随机测量了30架飞机的计划起飞和实际起飞时间差。现在不能假定时间总体是正态分布,或是方差齐性的,独立样本结果:航线1,平均时间差12.4min,标准差3.72;航线2,平均时间差11.7min,标准差3.6。问两条航线平均时间差的差值的99%置信区间是什么?
均值差的假设检验:标准差未知的任何总体分布的独立大样本(大于等于30)
同上的解释:对于独立大样本(样本容量大于等于30),均值差的抽样分布是正态分布,可以转为标准正态分布,进而使用Z分布进行均值差区间估计;当然,如果是正态总体且方差是齐性的,也可以使用t分布。
范例6:一位机场管理人员让你估计一下,两条航线中哪一条更遵守他们的计划起飞时间。对每条航线你随机测量了30架飞机的计划起飞和实际起飞时间差。现在不能假定时间总体是正态分布,或是方差齐性的,独立样本结果:航线1,平均时间差12.4min,标准差3.72;航线2,平均时间差11.7min,标准差3.6。在0.01显著水平下,用临界值决策规则作零假设:两条航线延误时间的差等于0的双侧检验。
均值差的置信区间:成对样本
对于成对样本,需要用到不同于上面描述的独立两样本的估计方法,而应该用成对样本模型,模型推导如下:
范例7:某个医学研究中心研究一种激素用量对于睡眠的影响。为了避免随机选择的偶然性(例如用15mg的病人比5mg的年轻)对试验结果的影响,于是根据可能影响睡眠的年龄、性别、健康情况一起其它因素选择了12对病人,然后将每对病人随机分配到5mg组和15mg组。对每个病人测量从服药到入睡的时间,然后计算每对的时间差,结果是:4.9,4.6,5.1,4.5,7.1,3.2,5.4,3.9,5.9,4.6,2.9,4.7。由这些数据计算5mg组合15mg组的95%置信区间,假定差值的总体是正态分布。
均值差的假设检验:成对样本
同上,成对样本均值差的假设检验也用t分布。
范例8:某个医学研究中心研究一种激素用量对于睡眠的影响。为了避免随机选择的偶然性(例如用15mg的病人比5mg的年轻)对试验结果的影响,于是根据可能影响睡眠的年龄、性别、健康情况一起其它因素选择了12对病人,然后将每对病人随机分配到5mg组和15mg组。对每个病人测量从服药到入睡的时间,然后计算每对的时间差,结果是:4.9,4.6,5.1,4.5,7.1,3.2,5.4,3.9,5.9,4.6,2.9,4.7。在显著水平0.05下,用临界值决策桂策做零假设:两总体均值差为0的右侧检验,假设差值总体是正态分布。
方差比
上一篇两样本估计和假设检验基础讲过,两样本均值估计和假设检验用均值差表示,而两样本方差估计和假设检验则应该用方差比。这里就引出了F分布(F分布回顾:两样本估计和假设检验基础)。
方差比的置信区间:参数未知的正态分布总体的独立样本
范例9:为检测某种激素对失眠的影响,一个医生给两组临睡前的病人服用不同剂量的激素,然后测量他们从服药到入睡的时间,第一组服用的是5mg的剂量,第二组服用的是15mg的剂量,样本是独立的,结果为:第一组,样本容量为10人,均值为14.8min,方差为4.36;第二组,样本容量为12人,均值为10.2min,方差为4.66。假定两种条件下的总体都是正态分布,计算量总体方差比的90%置信区间。
范例10:为检测某种激素对失眠的影响,一个医生给两组临睡前的病人服用不同剂量的激素,然后测量他们从服药到入睡的时间,第一组服用的是5mg的剂量,第二组服用的是15mg的剂量,样本是独立的,结果为:第一组,样本容量为10人,均值为14.8min,方差为4.36;第二组,样本容量为12人,均值为10.2min,方差为4.66。假定两总体方差齐性,在0.01显著水平下,用临界值决策规则作这个假定的双侧检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14