扩张卷积,也被称为空洞卷积,是一种在深度学习中常用的卷积操作,可以有效地增加模型感受野和步幅,同时减少参数数量。 在PyTorch中,扩张卷积是通过使用nn.Conv2d()函数来实现的。该函数有四个必填参数:in_channe ...
2023-04-07在深度学习模型训练过程中,往往需要处理大量的数据和参数,进而需要较大的计算资源支持。然而,单张显卡的显存有限,当模型过于复杂或者数据集过于庞大时,会导致无法将整个模型同时加载到显存中进行训练。为了充 ...
2023-04-07TensorFlow 1.x版本是Google发布的第一个深度学习框架,它在2015年推出后,迅速成为了业界最受欢迎的深度学习框架之一。然而,TensorFlow 1.x版本也存在一些弊端,这些弊端在TensorFlow 2.0和PyTorch等新一代深度学 ...
2023-04-07Linux Namespace 是 Linux 操作系统中的一种隔离机制,可以用来创建独立的用户空间,使得不同进程之间的资源隔离和沙箱化成为可能。在一个 Namespace 中,进程可以看到自己所处的环境,但是不能访问其它 Namespace ...
2023-04-07MySQL的中间隙锁是指在使用索引进行范围查询时,对于被查询的索引键范围之外的“空隙”部分也会被加锁,以避免幻读的问题。 幻读(Phantom Read)是指在一个事务中多次执行同样的查询语句,但是每次查询结果都不同, ...
2023-04-07在神经网络的训练过程中,我们通常会把数据集划分为训练集和验证集。训练集用于训练模型,而验证集则用于评估模型的性能。在实际操作中,有时候我们会遇到训练集和验证集的损失(loss)、准确率(acc)差别过大的情况 ...
2023-04-07在PyTorch中,计算矩阵的相关系数矩阵可以使用torch.corrcoef()函数。该函数接受一个张量作为输入,返回该张量的行之间的相关系数矩阵。如果输入张量是二维的,则计算其中每一列之间的相关系数矩阵。下面我们将详 ...
2023-04-07神经网络训练是一种基于反向传播算法的优化过程,旨在通过调整模型参数来最小化损失函数的值,从而使得模型能够更好地拟合训练数据并具备良好的泛化性能。在这个过程中,我们通常会关注训练过程中的损失函数值(或 ...
2023-04-07在进行SPSS(统计软件)相关性分析时,显著性水平(p值)通常用于评估两个变量之间的关系是否显著。简单来说,p值越小表示两个变量之间的关系越显著。 通常情况下,我们使用0.05作为显著性水平的阈值。这意味着 ...
2023-04-07深度学习卷积神经网络(CNN)是一种强大的机器学习算法,已经被广泛应用于计算机视觉、语音识别和自然语言处理等领域。CNN在图像分类和目标检测等任务中表现出色,其中最重要的原因就是其能够从原始像素数据中提取出高 ...
2023-04-07随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多 ...
2023-04-07MySQL是一个广泛使用的关系型数据库管理系统,其日志功能对于数据库的运维和管理至关重要。MySQL中有多种类型的日志文件,分别记录了数据库的各种操作和事件,包括二进制日志、错误日志、查询日志、慢查询日志和事务 ...
2023-04-07在神经网络中,难样本和噪音样本是两个重要的概念,它们在模型训练和预测过程中起着不同的作用。 首先,噪音样本是指在数据集中存在的不符合真实分布的异常、异常值或错误标注的数据样本。这些样本可能会对模型的性 ...
2023-04-07Python是一种优秀的编程语言,专门用于数据分析和可视化。其中,matplotlib是Python中最流行的数据可视化库之一。它提供了丰富的绘图功能,并可以轻松自定义图表的各个方面,包括x和y轴的长度。 在本文中,我们 ...
2023-04-07Hadoop、Spark、Storm与Flink是四种流行的大数据处理框架。它们都可以用于处理海量数据和实现分布式计算,但在细节上有所不同。本文将对这四个框架进行比较,并探讨它们适用的不同场景。 Hadoop Hadoop是一 ...
2023-04-07在深度学习网络框架中,确定神经元数量是一个重要的设计决策。神经元数量越多,模型的能力和复杂度就越高,但同时也会增加计算和存储资源的需求,可能导致过拟合等问题。因此,正确地确定神经元数量对于设计高效和准 ...
2023-04-07神经网络反向传播算法(Backpropagation)是一种用于训练神经网络的算法,其本质是通过最小化损失函数来寻找权重和偏置参数的最优值。在深度学习中,尤其是在计算机视觉、自然语言处理和语音识别等领域中,神经网络 ...
2023-04-07在过去的几年中,深度学习领域取得了显著的发展。为了更好地利用硬件资源来训练复杂的深度神经网络,大量的工作已经被投入到并行化训练算法和框架的研究中。然而,一些GPU在使用PyTorch等库时可能会遇到无法有效并行 ...
2023-04-07当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...
2023-04-07ActiveMQ和Kafka都是常用的开源消息队列软件,它们在设计上有许多不同之处。在本文中,我将介绍这两种消息队列系统的区别,并探讨它们各自的优点和缺点。 ActiveMQ是一种基于JMS(Java Message Service)规范的消息 ...
2023-04-072025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10