
SPSS统计基础-交叉表功能的使用
交叉表过程形成二阶和多阶表,并提供了各种二阶表关联检验和度量。表的结构以及类别是否排序决定了要使用的检验或度量。
仅对二阶表计算交叉表关联统计量和度量。如果指定一行、一列和一个层因子(控制变量),交叉表过程将为层因子(或两个或更多控制变量的值组合)的每个值形成一个关联统计量和量度面板。例如,如果性别是一个已婚(是、否)与生活(生活充满激情、循规蹈矩或索然无味)相对照的表的层因子,则女性的二阶表结果将与男性的二阶表结果分开计算,并打印成互相接续的面板格式。
关联统计量和度量。Pearson 卡方、似然比卡方、线性关联检验、Fisher 的精确检验、Yates 校正卡方、Pearson 的r、Spearman 的rho、列联系数、phi、Cramér 的V,、对称和非对称lambda、Goodman 和Kruskal 的tau、不确定性系数、gamma、Somers 的d、Kendall 的tau-b、Kendall 的tau-c、eta 系数、Cohen 的kappa、相对风险估计、几率比、McNemar 检验、Cochran 和Mantel-Haenszel 统计量以及列比例统计量。
数据。要定义每个表变量的类别,请使用数值或字符串(八个或八个以下字节)变量的值。例如,对于gender,您可用将数据编码为1 和2,或编码为male 和female。
假设。如有关统计量一节中所述,某些统计量和度量假定已排序的类别(有序数据)或数量值(定距或者定比数据)。另有一些统计量则在表变量具有未排序的类别(名义数据)时有效。对于基于卡方的统计量(phi、Cramér 的V 和列联系数),数据应为来自多项分布的随机样本。
获取交叉制表
E 从菜单中选择:
分析> 描述统计> 交叉表...
根据需要,您可以:
选择一个或多个控制变量。
单击统计量以获取二阶表或子表的关联检验和度量。
单击单元格以获取观察值和期望值、百分比值和残差。
单击格式以控制类别的顺序
交叉表:层
如果选择一个或多个层变量,则将对每个层变量(控制变量)的每个类别产生单独的交叉制表。例如,如果有一个行变量、一个列变量和一个具有两个类别的层变量,则可为层变量的每个类别生成一个二阶表。要形成另一层控制变量,请单击下一个。为每个第一层变量与每个第二层变量(等等)的每种类别组合生成子表。如果请求了关联统计量和度量,则它们仅应用于二阶子表。
显示复式条形图。复式条形图可帮助汇总个案组的数据。对于在“行”下指定的变量的每个值,均有一个聚类条形图。定义每个聚类内的条形图的变量就是您在“列”下指定的变量。对于此变量的每个值,均有一组不同颜色或图案的条形图。如果您在“列”或“行”下指定多个变量,则为每个双变量组合生成一个复式条形图。
交叉表统计量
卡方。对于两行两列的表,请选择卡方以计算Pearson 卡方、似然比卡方、Fisher 的精确检验和Yates 修正卡方(连续性修正)。对于2 × 2 表,如果表不是从具有期望频率小于5 的单元的较大表中的缺失行或列得来的,则计算Fisher 的精确检验。对所有其他2 × 2 表计算Yates 修正卡方。对于具有任意行列数的表,选择卡方来计算Pearson 卡方和似然比卡方。当两个表变量都是定量变量时,卡方将产生线性关联检验。
相关性。对于行和列都包含排序值的表,相关将生成Spearman 相关系数rho(仅数值数据)。Spearman 的rho 是秩次之间的关联的测量。当两个表变量(因子)都是定量变量时,相关产生Pearson 相关系数r,这是变量之间的线性关联的定量。
名义。对于名义数据(无内在顺序,如天主教、新教和犹太教),可以选择列联系数、Phi(系数)和Cramér 的V、Lambda(对称和非对称lambda 以及Goodman 和Kruskal的tau)和不确定性系数。
相依系数. 一种基于卡方的关联性测量。值的范围在0 到1 之间,其中0 表示
行变量和列变量之间不相关,而接近1 的值表示变量之间的相关度很高。可能
的极大值取决于表中的行数和列数。
Phi and Cramer's V. Phi 是基于卡方统计量的关联性测量,它将卡方检验统计量除以样本大小,并取结果的平方根。Cramer 的V 是基于卡方统计量的关联性测量。
Lambda. 一种相关性测量,它反映使用自变量的值来预测因变量的值时,误差成比例缩小。值为1 表示自变量能完全预测因变量。值为0 表示自变量对于预测因变量没有帮助。
不定性系数. 一种相关性的测量,它表示当一个变量的值用来预测其他变量的值时,误差成比例下降的程度。例如,值0.83 指示如果知道一个变量的值,则在预测其他变量的值时会将误差减少83%。程序同时计算不定性系数的对称版本和不对称版本。
有序。对于行和列都包含已排序值的表,请选择Gamma(对于2 阶表,为零阶;对于3阶到10 阶表,为条件)、Kendall 的tau-b 和Kendall 的tau-c。要根据行类别预测列类别,请选择Somers 的d。
Gamma. 两个有序变量之间的相关性的对称度量,它的范围是从-1 到1。绝对值接近1 的值表示两个变量之间存在紧密的关系。接近0 的值表示关系较弱或者没有关系。对于二阶表,显示零阶gamma。对于三阶表到n 阶表,显示条件gamma。
Somers d.两个有序变量之间相关性的测量,它的范围是从-1 到1。绝对值接近1的值表示两个变量之间存在紧密的关系,值接近0 则表示两个变量之间关系很弱或没有关系。Somers 的d 是gamma 的不对称扩展,不同之处仅在于它包含了未约束到自变量上的成对的数目。还将计算此统计量的对称版本。
Kendall's tau-b. 将结考虑在内的有序变量或排序变量的非参数相关性测量。系数的符号指示关系的方向,绝对值指示强度,绝对值越大则表示关系强度越高。可能的取值范围是从-1 到1,但-1 或+1 值只能从正方表中取得。
Kendalls tau-c. 忽略结的有序变量的非参数关联性测量。系数的符号指示关系
的方向,绝对值指示强度,绝对值越大则表示关系强度越高。可能的取值范围是从-1 到1,但-1 或+1 值只能从正方表中取得。
按区间标定。当一个变量为分类变量,而另一个变量为定量变量时,请选择Eta。分类变量必须进行数值编码。
Eta. 范围在0 到1 之间的相关性测量,其中0 值表示行变量和列变量之间无相关性,接近1 的值表示高度相关。Eta 适用于在区间尺度上度量的因变量(例如收入)以及具有有限类别的自变量(例如性别)。计算两个eta 值:一个将行变量视为区间变量,另一个将列变量视为区间变量。
Kappa. 当两个估计方在估计同一个对象时,Cohen 的kappa 度量两者的估计之间的一致性。值为1 表示完全一致。值为0 表示几乎完全不一致。Kappa 基于平方表,其中列和行值代表相同刻度。在任何单元格中,如果有一个变量有观察值但另一个变量没有观察值,则单元格会分配计数0。如果这两个变量的数据存储类型(字符串或数值)不同,Kappa 不计算。对于字符串变量,这两个变量必须有相同的定义长度。风险. 对于2 x 2 表,某因子的存在与某事件的发生之间关联性强度的测量。如果该统计量的置信区间包含值1,则不能假设因子与事件相关。当因子出现很少时,几率比可用作估计或相对风险。
McNemar(M). 两个相关二分变量的非参数检验。使用卡方分布检验响应改变。“之前与之后”设计中的试验干预会导致响因变量发生变化,它对于检测到这些变化很有用。对于较大的正方表,会报告对称性的McNemar-Bowker 检验。
Cochran's and Mantel-Haenszel 统计量. Cochran 和Mantel-Haenszel 统计量可以用于检验二分因子变量和二分响应变量之间的条件独立性,条件是给定一个或多个分层(控制)变量定义的协变量模式。请注意:其他统计逐层计算,而Cochran 和Mantel-Haenszel 统计对所有层进行一次性计算。
交叉表:单元显示
计数。如果行和列变量彼此独立,则这是实际观察的个案数和期望的个案数。您可以选择隐藏低于指定整数的计数。隐藏值将显示为
比较列的比例。该选项将计算列属性的成对比较,并指出给定行中的哪对列明显不同。使用下标字母以APA 样式格式在交叉表中标识显著性差异,并以0.05 显著性水平对其进行计算。
注意:如果指定该选项并且不选择观察计数或列百分比,则观察计数包含在
交叉表中,并且会以APA 样式下标字母标识列比例检验的结果。
调整p 值(Bonferroni 方法)。列比例的成对比较使用了Bonferroni 修正,可在进行了多个比较后调整观察到的显著性水平。
百分比。百分比值可以跨行或沿列进行相加。还提供表(一层)中表示的个案总数的百分比值。注意:如果在“计数”组中选择隐藏小计数,也会隐藏与隐藏计数相关的百分比。
残差。未标准化的原始残差给出了观察值和期望值之间的差。还提供标准化残差和经过调整的标准化残差。
未标准化. 观察值与期望值之间的差。如果两个变量之间没有关系,则期望值是期望在单元中出现的个案数。如果行变量和列变量独立,则正的残差表示单元中的实际个案数多于期望的个案数。
标准化. 残差除以其标准差的估计。标准化残差也称为Pearson 残差,它的均
值为0,标准差为1。
调节的标准化. 单元格的残差(观察值减去期望值)除以其标准误的估计值。生成的标准化残差表示为均值上下的标准差单位。
非整数权重。单元计数通常为整数值,因为它们代表每个单元中的个案个数。但是,如果数据文件当前按某个带小数值(例如1.25)的权重变量进行加权,则单元计数也可能是小数值。在计算单元计数之前可以进行截断或舍入,或为表显示和统计计算都使用小数单元计数。
四舍五入单元格计数. 在计算任何统计之前,个案权重按原样使用,但单元中的累积权重要四舍五入。
截短单元格计数. 在计算任何统计之前,个案权重按原样使用,但截短单元中
的累积权重。
四舍五入个案权重. 在使用之前对个案权重进行四舍五入。
截短个案权重. 在使用之前对个案权重进行截短。
无调节. 个案权重按原样使用且使用小数单元计数。但是,当需要“精确”统计
(仅由“精确检验”选项提供)时,在计算“精确”检验统计之前,单元中的累积
权重或者截短或者四舍五入。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28