
工行河北省分行运用大数据防范外部欺诈成效显著
2014年,工行河北省分行充分运用大数据,发挥外部欺诈风险信息系统作用,成功防范外部欺诈风险事件349起,避免资金损失15982.76万元,其中防范电信诈骗事件270起,为广大客户避免资金损失463.9万元。
中国工商银行于2013年率先在国内银行业研发投产了外部欺诈风险信息系统,系统数据库收录了来自集团内部和国家有关部门、国际安全组织、银行同业等提供的大量业务及账户风险信息,广泛应用于信贷、信用卡、私人银行、票据、集中采购、人员管理等各个领域,为业务发展和风险防控提供精准预警和控制支持。特别是在保护客户资金、防范电信诈骗方面,系统收录了来自全国各级公安机关提供的电信诈骗账户,在导入该系统数据库后,通过与工行操作系统对接,当客户汇款业务的收款账户与系统的风险数据相匹配时,系统会实时预警提示柜员加强对客户的风险提示,认真审核业务真实性,防止给欺诈账户汇款,从源头上降低电信诈骗得逞,取得良好的社会效应。仅电信诈骗一项,从2013年投产应用到堵截资金破亿元,全行仅仅用了14个月时间。
工行河北省分行与省公安厅建立了风险信息共享合作机制,成功将公安厅提供的1.85万条电信诈骗信息导入系统数据库。2013年系统投产应用以来,实现了堵截电信诈骗资金700余万元,有效保护了客户资金安全,为全省防范和打击电信诈骗工作做出了突出贡献。
近期,工行外部欺诈风险信息系统已在该行网银、手机银行、ATM、自助终端渠道正式投产运行,真正实现了覆盖全渠道、7×24小时的电信诈骗防范网络体系,使该行的客户资金保护能力更上了一个新台阶。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14