京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Andrej Karpathy
编译 | AI有道
特斯拉人工智能部门主管 Andrej Karpathy 发布新博客,介绍神经网络训练的技巧。
Andrej Karpathy 是深度学习计算机视觉领域、与领域的研究员。博士期间师从李飞飞。在读博期间,两次在谷歌实习,研究在 Youtube 视频上的大规模特征学习,2015 年在 DeepMind 实习,研究深度强化学习。毕业后,Karpathy 成为 OpenAI 的研究科学家,后于 2017 年 6 月加入特斯拉担任人工智能与视觉总监。
今日他发布的这篇博客能为深度学习研究者们提供极为明晰的洞见,在 Twitter 上也引发了极大的关注。
1. 谁说神经网络训练简单了?
很多人认为开始训练神经网络是很容易的,大量库和框架号称可以用 30 行代码段解决你的数据问题,这就给大家留下了(错误的)印象:训练神经网络这件事是非常简单的,不同模块即插即用就能搭个深度模型。
简单的建模过程通常如下所示:
>>> your_data = # plug your awesome dataset here
>>> model = SuperCrossValidator(SuperDuper.fit, your_data, ResNet50, SGDOptimizer)# conquer world here
这些库和示例令我们想起了熟悉标准软件及模块,标准软件中通常可以获取简洁的 API 和抽象。
例如 Request 库的使用展示如下:
>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code200
酷!这些库和框架的开发者背负起理解用户 Query 字符串、url、GET/POST 请求、HTTP 连接等的大量需求,将复杂度隐藏在几行代码后面。这就是我们熟悉与期待的。
然而,神经网络不一样,它们并不是现成的技术。我在 2016 年撰写的一篇博客中试图说明这一点,在那篇文章中我认为反向传播是「leaky abstraction」,然而现在的情况似乎更加糟糕了。
Backprop + SGD 不是魔法,无法让你的网络运行;批归一化也无法奇迹般地使网络更快收敛;RNN 也不能神奇地让你直接处理文本。不要因为你可以将自己的问题表示为强化学习,就认为你应该这么做。如果你坚持在不理解技术原理的情况下去使用它,那么你很可能失败。
2. 背着我不 work 的神经网络
当你破坏代码或者错误配置代码时,你通常会得到某种异常。你在原本应该插入字符串的地方插入了整数;导入出错;该关键字不存在……此外,为了方便 debug,你还很可能为某个功能创建单元测试。
这还只是开始。训练神经网络时,有可能所有代码的句法都正确,但整个训练就是不对。可能问题出现在逻辑性(而不是句法),且很难通过单元测试找出来。
例如,你尝试截损失度而不是梯度,这会导致训练期间的异常值被忽视,但语法或维度等检测都不会出现错误。又或者,你弄错了正则化强度、学习率、衰减率、模型大小等的设置,那么幸运的话网络会报错,然而大部分时候它会继续训练,并默默地变糟……
因此,「快速激烈」的神经网络训练方式没有用,只会导致困难。现在,这些经验性困难是使神经网络正常运行的拦路虎,你需要更加周密详尽地调试网络才能减少困难,需要大量可视化来了解每一件事。
在我的经验中,深度学习成功的重要因素是耐心和注重细节。
如何解决
基于以上两点事实,我开发了一套将神经网络应用于新问题的特定流程。该流程严肃地执行了上述两项原则:耐心和注重细节。
具体来说,它按照从简单到复杂的方式来构建,我们在每一步都对即将发生的事作出准确的假设,然后用实验来验证假设或者调查直到发现问题。我们试图尽力阻止大量「未经验证的」复杂性一次来袭,这有可能导致永远也找不到的 bug/错误配置。如果让你像训练神经网络那样写它的代码,你会想使用非常小的学习率,然后猜测,再在每次迭代后评估整个测试集。
1. 梳理数据
训练神经网络的第一步是不要碰代码,先彻底检查自己的数据。这一步非常关键。我喜欢用大量时间浏览数千个样本,理解它们的分布,寻找其中的模式。幸运的是,人类大脑很擅长做这件事。有一次,我发现数据中包含重复的样本,还有一次我发现了损坏的图像/标签。我会查找数据不均衡和偏差。我通常还会注意自己的数据分类过程,它会揭示我们最终探索的架构。比如,只需要局部特征就够了还是需要全局语境?标签噪声多大?
此外,由于神经网络是数据集的压缩/编译版本,你能够查看网络(错误)预测,理解预测从哪里来。如果网络预测与你在数据中发现的不一致,那么一定是什么地方出问题了。
在你对数据有了一些感知之后,你可以写一些简单的代码来搜索/过滤/排序标签类型、标注规模、标注数量等,并沿任意轴可视化其分布和异常值。异常值通常能够揭示数据质量或预处理中的 bug。
2. 配置端到端训练/评估架构、获取基线结果
现在我们已经理解了数据,那我们就可以开始构建高大上的多尺度 ASPP FPN ResNet 并训练强大的模型了吗?当然还不到时候,这是一个充满荆棘的道路。我们下一步需要构建一个完整的训练、评估架构,并通过一系列实验确定我们对准确率的置信度。
在这个阶段,你们最好选择一些不会出错的简单模型,例如线性分类器或非常精简的 ConvNet 等。我们希望训练这些模型,并可视化训练损失、模型预测和其它度量指标(例如准确率)。当然在这个过程中,我们还需要基于一些明确假设,从而执行一系列对照实验(ablation experiments)。
该阶段的一些技巧与注意事项:
3. 过拟合
到了这个阶段,我们应该对数据集有所了解了,而且有了完整的训练+评估流程。对于任何给定的模型,我们可以计算出我们信任的度量。而且还为独立于输入的基线准备了性能,一些 dumb 基线的性能(最好超过这些),我们人类的表现有大致的了解(并希望达到这一点)。现在,我们已经为迭代一个好的模型做好了准备。
我准备用来寻找好模型的方法有两个阶段:首先获得足够大的模型,这样它能够过拟合(即关注训练损失),然后对其进行适当的正则化(弃掉一些训练损失以改进验证损失)。我喜欢这两个阶段的原因是,如果我们不能用任何模型实现较低的误差率,则可能再次表明一些问题、bug 和配置错误。
该阶段的一些技巧与注意事项:
4. 正则化
理想情况下,我们现在至少有了一个拟合训练集的大模型。现在是时候对它进行正则化,并通过放弃一些训练准确率来提升验证准确率了。技巧包括:
最后,为了更加确保网络是个合理的分类器,我喜欢可视化网络第一层的权重,确保自己获得了有意义的边缘。如果第一层的滤波器看起来像噪声,那需要去掉些东西。类似地,网络内的激活函数有时候也会揭示出一些问题。
5. 精调
现在你应该位于数据集一环,探索取得较低验证损失的架构模型空间。这一步的一些技巧包括:
6. 最后的压榨
一旦你找到最好的架构类型和超参数,依然可以使用更多的技巧让系统变得更好:
结论
一旦你做到了这些,你就具备了成功的所有要素:对神经网络、数据集和问题有了足够深的了解,配置好了完整的训练/评估体系,取得高置信度的准确率,逐渐探索更复杂的模型,提升每一步的表现。现在万事俱备,就可以去读大量论文,尝试大量实验并取得 SOTA 结果了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27