京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树算法的R实现
根据ppvk上的文章《基于 R 语言和 SPSS 的决策树算法介绍及应用》,只简单跑了关于R部分的代码,实验成功,简单记录下。
决策树算法简介
R语言实现
决策树算法
决策树算法是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
一个简单的决策树示例(图片来源网络):

决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别,根据一步步地属性分类可以将整个特征空间进行划分,从而区别出不同的分类样本。好的决策树不仅对训练样本有着很好的分类效果,对于测试集也有着较低的误差率。
数据集纯度函数
信息增益
信息熵表示的是不确定度。均匀分布时,不确定度最大,此时熵就最大。当选择某个特征对数据集进行分类时,分类后的数据集信息熵会比分类前的小,其差值表示为信息增益。
假设在样本数据集 D 中,混有 c 种类别的数据。构建决策树时,根据给定的样本数据集选择某个特征值作为树的节点。
在数据集中,可以计算出该数据中的信息熵:其中 D 表示训练数据集,c 表示数据类别数,Pi 表示类别 i 样本数量占所有样本的比例。
作用前的信息熵公式

对应数据集 D,选择特征 A 作为决策树判断节点时,在特征 A 作用后的信息熵的为 Info(D),其中 k 表示样本 D 被分为 k 个部分。

信息增益表示数据集 D 在特征 A 的作用后,其信息熵减少的值
Gain\left ( A \right )=Info\left ( D \right ) - Info_{A}\left ( D \right )
对于决策树节点最合适的特征选择,就是 Gain(A) 值最大的特征。
基尼指数
对于给定的样本集合D, c 表示数据集中类别的数量,Pi 表示类别 i 样

选取的属性为 A,那么分裂后的数据集 D 的基尼指数的计算公式,其中 k 表示样本 D 被分为 k 个部分,数据集 D 分裂成为 k 个 Dj 数据集。

对于特征选取,需要选择最小的分裂后的基尼指数。也可以用基尼指数增益值作为决策树选择特征的依据

R语言实现决策树算法
实现决策树算法之前首先确保自己已经安装了所需相应的语言包。安装方法有两种。
方法一:使用 install.packages( ) ,括号内填写要安装的包。例如
install.packages("rpart")
方法二:自己在官网下载好语言包,手动安装。使用方法一安装时,如果自己安装的R的版本过低,而R在执行 install.packages( )命令时,会自动下载最新版本,可能与计算机上安装的R的版本不符合,导致运行不成功等问题,这时需要自己去官网上下载与本机上R版本相符的语言包进行安装。安装方法如下:
点击按键,弹出页面

点击browse,浏览你所保存的r语言包,选中后,点击install,即可安装。
使用rpart包
# 导入构建决策树所需要的库
library("rpart")
library("rpart.plot")
library("survival")
#--------------------------------------------------------------------------#
# A查看本次构建决策树所用的数据源 stagec
stagec
# 通过 rpart 函数构建决策树
fit <- rpart(Surv(pgtime,pgstat)~age+eet+g2+grade+gleason+ploidy,stagec,method="exp")
# 查看决策树的具体信息
print(fit)
printcp(fit)
# 绘制构建完的决策树图
plot(fit, uniform=T, branch=0.6, compress=T)
text(fit, use.n=T)
# 通过 prune 函数剪枝
fit2 <- prune(fit, cp=0.016)
# 绘制剪枝完后的决策树图
plot(fit2, uniform=T, branch=0.6, compress=T)
text(fit2, use.n=T)
#-------------------------------------------------------------------------#
#B(rpart包)使用TH.data包中的bodyfat数据集
str(TH.data::bodyfat)
dim(TH.data::bodyfat)
head(TH.data::bodyfat)
# 分别选取训练样本(70%)和测试样本(30%)
set.seed(1234)
indexa <- sample(2,nrow(TH.data::bodyfat),replace = TRUE,prob=c(0.7,0.3))
bodyfat_train <- TH.data::bodyfat[indexa==1,]
bodyfat_test <- TH.data::bodyfat[indexa==2,]
# 使用age、waistcirc等五个变量进行决策树分类
myFormulaa <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
# minsplit为最小分支节点数
bodyfat_rpart <- rpart(myFormulaa, data = bodyfat_train, control = rpart.control(minsplit = 10))
# cptable: a matrix of information on the optimal prunings based on a complexity parameter.
print(bodyfat_rpart$cptable)
# 输出具体的决策树模型结果
bodyfat_rpart
# 可视化展示
rpart.plot::rpart.plot(bodyfat_rpart)
# 对决策树进行剪枝处理(prune),防止过度拟合
opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
cp <- bodyfat_rpart$cptable[opt, "CP"]
bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
plot(bodyfat_prune)
text(bodyfat_prune,use.n=T)
# 使用调整过后的决策树进行预测
DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat_test)
xlim <- range(TH.data::bodyfat$DEXfat)
plot(DEXfat_pred ~ DEXfat, data=bodyfat_test, xlab="Observed", ylab="Predicted", ylim=xlim, xlim=xlim)
# 为图形添加回归线,点的分布越靠近该线,则表示使用算法预测的精度越高
abline(a=0,b=1)
使用party包
# 载入所用的包,使用ctree()函数
library(party)
#本次构建决策树所用的数据源 iris
str(iris)
set.seed(1234)
#分别选取训练样本(70%)和测试样本(30%)
indexb <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7,0.3))
traindata <- iris[indexb == 1,]
testdata <- iris[indexb == 2,]
# 构建模型
myFormulab <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormulab, data=traindata)
# 决策树模型的判断结果
table(predict(iris_ctree), traindata$Species)
# 输出具体的决策树模型结果
print(iris_ctree)
# 可视化展示
plot(iris_ctree)
plot(iris_ctree,type='simple')
# predict on test data
testpred <- predict(iris_ctree,newdata=testdata)
table(testpred,testdata$Species)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12