
决策树算法的R实现
根据ppvk上的文章《基于 R 语言和 SPSS 的决策树算法介绍及应用》,只简单跑了关于R部分的代码,实验成功,简单记录下。
决策树算法简介
R语言实现
决策树算法
决策树算法是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
一个简单的决策树示例(图片来源网络):
决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别,根据一步步地属性分类可以将整个特征空间进行划分,从而区别出不同的分类样本。好的决策树不仅对训练样本有着很好的分类效果,对于测试集也有着较低的误差率。
数据集纯度函数
信息增益
信息熵表示的是不确定度。均匀分布时,不确定度最大,此时熵就最大。当选择某个特征对数据集进行分类时,分类后的数据集信息熵会比分类前的小,其差值表示为信息增益。
假设在样本数据集 D 中,混有 c 种类别的数据。构建决策树时,根据给定的样本数据集选择某个特征值作为树的节点。
在数据集中,可以计算出该数据中的信息熵:其中 D 表示训练数据集,c 表示数据类别数,Pi 表示类别 i 样本数量占所有样本的比例。
作用前的信息熵公式
对应数据集 D,选择特征 A 作为决策树判断节点时,在特征 A 作用后的信息熵的为 Info(D),其中 k 表示样本 D 被分为 k 个部分。
信息增益表示数据集 D 在特征 A 的作用后,其信息熵减少的值
Gain\left ( A \right )=Info\left ( D \right ) - Info_{A}\left ( D \right )
对于决策树节点最合适的特征选择,就是 Gain(A) 值最大的特征。
基尼指数
对于给定的样本集合D, c 表示数据集中类别的数量,Pi 表示类别 i 样
选取的属性为 A,那么分裂后的数据集 D 的基尼指数的计算公式,其中 k 表示样本 D 被分为 k 个部分,数据集 D 分裂成为 k 个 Dj 数据集。
对于特征选取,需要选择最小的分裂后的基尼指数。也可以用基尼指数增益值作为决策树选择特征的依据
R语言实现决策树算法
实现决策树算法之前首先确保自己已经安装了所需相应的语言包。安装方法有两种。
方法一:使用 install.packages( ) ,括号内填写要安装的包。例如
install.packages("rpart")
方法二:自己在官网下载好语言包,手动安装。使用方法一安装时,如果自己安装的R的版本过低,而R在执行 install.packages( )命令时,会自动下载最新版本,可能与计算机上安装的R的版本不符合,导致运行不成功等问题,这时需要自己去官网上下载与本机上R版本相符的语言包进行安装。安装方法如下:
点击按键,弹出页面
点击browse,浏览你所保存的r语言包,选中后,点击install,即可安装。
使用rpart包
# 导入构建决策树所需要的库
library("rpart")
library("rpart.plot")
library("survival")
#--------------------------------------------------------------------------#
# A查看本次构建决策树所用的数据源 stagec
stagec
# 通过 rpart 函数构建决策树
fit <- rpart(Surv(pgtime,pgstat)~age+eet+g2+grade+gleason+ploidy,stagec,method="exp")
# 查看决策树的具体信息
print(fit)
printcp(fit)
# 绘制构建完的决策树图
plot(fit, uniform=T, branch=0.6, compress=T)
text(fit, use.n=T)
# 通过 prune 函数剪枝
fit2 <- prune(fit, cp=0.016)
# 绘制剪枝完后的决策树图
plot(fit2, uniform=T, branch=0.6, compress=T)
text(fit2, use.n=T)
#-------------------------------------------------------------------------#
#B(rpart包)使用TH.data包中的bodyfat数据集
str(TH.data::bodyfat)
dim(TH.data::bodyfat)
head(TH.data::bodyfat)
# 分别选取训练样本(70%)和测试样本(30%)
set.seed(1234)
indexa <- sample(2,nrow(TH.data::bodyfat),replace = TRUE,prob=c(0.7,0.3))
bodyfat_train <- TH.data::bodyfat[indexa==1,]
bodyfat_test <- TH.data::bodyfat[indexa==2,]
# 使用age、waistcirc等五个变量进行决策树分类
myFormulaa <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
# minsplit为最小分支节点数
bodyfat_rpart <- rpart(myFormulaa, data = bodyfat_train, control = rpart.control(minsplit = 10))
# cptable: a matrix of information on the optimal prunings based on a complexity parameter.
print(bodyfat_rpart$cptable)
# 输出具体的决策树模型结果
bodyfat_rpart
# 可视化展示
rpart.plot::rpart.plot(bodyfat_rpart)
# 对决策树进行剪枝处理(prune),防止过度拟合
opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
cp <- bodyfat_rpart$cptable[opt, "CP"]
bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
plot(bodyfat_prune)
text(bodyfat_prune,use.n=T)
# 使用调整过后的决策树进行预测
DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat_test)
xlim <- range(TH.data::bodyfat$DEXfat)
plot(DEXfat_pred ~ DEXfat, data=bodyfat_test, xlab="Observed", ylab="Predicted", ylim=xlim, xlim=xlim)
# 为图形添加回归线,点的分布越靠近该线,则表示使用算法预测的精度越高
abline(a=0,b=1)
使用party包
# 载入所用的包,使用ctree()函数
library(party)
#本次构建决策树所用的数据源 iris
str(iris)
set.seed(1234)
#分别选取训练样本(70%)和测试样本(30%)
indexb <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7,0.3))
traindata <- iris[indexb == 1,]
testdata <- iris[indexb == 2,]
# 构建模型
myFormulab <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormulab, data=traindata)
# 决策树模型的判断结果
table(predict(iris_ctree), traindata$Species)
# 输出具体的决策树模型结果
print(iris_ctree)
# 可视化展示
plot(iris_ctree)
plot(iris_ctree,type='simple')
# predict on test data
testpred <- predict(iris_ctree,newdata=testdata)
table(testpred,testdata$Species)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13