
奇异值分解SVD的理解与应用
为更好的理解这篇文章,现在这里列出几个文中出现的概念,想要更深的理解这些概念,可以看我的另一篇文章:关于特征值的理解。
向量的内积:两向量a=[a1,a2,…,an]和b=[b1,b2,…,bn],其内积为 a⋅b=a1b1+a2b2+……+anbn。
特征值与特征向量:对一个m×m矩阵A和向量x,如果存在λ使得下式成立,Ax=λx,则称λ为矩阵A的特征值,x称为矩阵的特征向量。
对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵。
正交矩阵:正交是一个方块矩阵V,行与列皆为正交的单位向量,即Vn×nVTn×n=In,使得该矩阵的转置矩阵为其逆矩阵,VT=V−1。
直接进入正题,矩阵当中有一个非常著名的理论,即:
一个n×n的对称矩阵A可以分解为:A=VDVT。其中,V是一个n×n正交矩阵,并且列向量是矩阵A的特征向量;D是一个n×n对角矩阵,并且对角线上的值为对应特征向量的特征值。
上面的理论是针对一个n×n的对称矩阵,那么对于任意的一个m×n的矩阵A,有没有类似的表达方法呢。答案是肯定的,svd正是用来解决这个问题的。
对任意一个m×n的矩阵A,可以将其分解为:A=USVT。其中U是一个m×m的正交矩阵;S是一个m×n的矩阵,其主对角元素≥0,非主对角元素均为0;V是一个n×n的正交矩阵。
![]()
关于svd的证明过程,似乎更多是数值上的工作,本文想给出更多intuitive上的理解。想要了解证明的可以参考这篇论文:Kalman D. A singularly valuable decomposition: the SVD of a matrix。
这样,对任意一个矩阵,我都可以分解成三个矩阵的内积。让我们看一下它有什么神奇的性质。
AAT=USVTVSTUT=USSTUT=UDUT(1)
由于V是一个正交矩阵,VT=V−1,所以VT*V=I。S只有主对角元素不为0,那么SST的结果为一个m×m的对角矩阵D。而虽然A是任意的一个m×n的矩阵,但AAT是一个m×m的对称矩阵。这样一看,AAT=UDUT是不是和前面那个理论非常相似。那么U的列向量应该是对称矩阵AAT的特征向量,D应该是一个对角矩阵,且对角线上值是对称矩阵AAT的特征值。
ATA=VSTUTUSVT=VSTSVT=VWVT(2)
同样,V的列向量则是对称矩阵ATA的特征向量,而W则是一个n×n的对角矩阵。这里W和D实际上是相同的,只是对角线上后面的0的数量不一样。
![]()
可以看出,矩阵S主对角线上的值,实际上是对称矩阵AAT或ATA特征值的平方根。
所以,实际上svd是一个矩阵分解方法,对于任意一个m×n的矩阵A,svd都可以将其分解成为A=USVT。其中矩阵U的列向量是对称矩阵AAT的特征向量,称作左奇异矩阵;矩阵V的的列向量是对称矩阵ATA的特征向量;S是一个m×n的矩阵,主对角线上的值是对称矩阵AAT或ATA特征值的平方根,称作奇异值,且非对角线上的值为0.
不知道写到这里,大家是不是对svd有了一个比较具体的印象。然而,上面只是从数学上解释了svd的构成,我们好奇的是,从很多地方,我们都听到了svd,即使如上面所述,它长的是这个样子,但是我们它到底可以用来做什么事情呢?
下面我们举几个svd的实际应用,加深我们对它的理解。
1)有损的数据压缩
假设我们有一个m×n的矩阵A,它表示一组数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25