
Python单体模式的几种常见实现方法详解
本文实例讲述了Python单体模式的几种常见实现方法。分享给大家供大家参考,具体如下:
一、修改父类的 __dict__
class Borg:
_shared_state = {}
def __init__(self):
self.__dict__ = self._shared_state
class Singleton(Borg):
def __init__(self, name):
super().__init__()
self.name = name
def __str__(self):
return self.name
x = Singleton('sausage')
print(x)
y = Singleton('eggs')
print(y)
z = Singleton('spam')
print(z)
print(x)
print(y)
注意,这种方法实现的并非真正的单体模式!!
下面几种方法实现的才是真正的单体模式
二、使用元类
先看看这里关于元类的描述:
元类一般用于创建类。
在执行类定义时,解释器必须要知道这个类的正确的元类。解释器会先寻找类属性__metaclass__,如果此属性存在,就将这个属性赋值给此类作为它的元类。如果此属性没有定义,它会向上查找父类中的__metaclass__。如果还没有发现__metaclass__属性,解释器会检查名字为__metaclass__的全局变量,如果它存在,就使用它作为元类。否则, 使用内置的 type 作为此类的元类。
1. 继承 type,使用 __call__
注意__call__的参数
class Singleton(type):
_instance = None
def __call__(self, *args, **kw):
if self._instance is None:
self._instance = super().__call__(*args, **kw)
return self._instance
class MyClass(object):
__metaclass__ = Singleton
print(MyClass())
print(MyClass())
2. 继承 type,使用 __new__
注意__new__的参数
class Singleton(type):
_instance = None
def __new__(cls, name, bases, dct):
if cls._instance is None:
cls._instance = super().__new__(cls, name, bases, dct)
return cls._instance
class MyClass(object):
__metaclass__ = Singleton
print(MyClass())
print(MyClass())
3. 继承 object,使用 __new__
注意__new__的参数
class Singleton(object):
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
class MyClass(object):
__metaclass__ = Singleton
print(MyClass())
print(MyClass())
下面还有一个很巧妙的方法实现单体模式
使用类方法classmethod
class Singleton:
_instance = None
@classmethod
def create(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
def __init__(self):
self.x = 5 # or whatever you want to do
sing = Singleton.create()
print(sing.x) # 5
sec = Singleton.create()
print(sec.x) # 5
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07