京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电商当道,实体行业好像迎来了寒冬,凛冽的网购风潮一阵接一阵刮倒一批批实体店,实体店高昂的租金成了压死骆驼的最后一根稻草。对于网购的优势,据中国消费者报调查表明:半数以上的人觉得网购价格便宜,30%的人觉得商品丰富选择更多,10%的人觉得便利快捷。电商在大数据收集和运用中更具灵活性,瞄准目标受众,从传统行业以产品为导向的传统营销模式像以消费者为导向的精确营销模式,此类的精准化营销也成了倒逼实体店改革的推手,那么实体店如何跟上步伐,运用好大数据。在互联网时代打场翻身仗。
什么是大数据
大数据(Big Data)是指数据规模大到不能使用传统分析方法在合理时间内进行有效的处理。大数据不仅仅指数据规模大,还包括数据处理和数据应用,是数据对象、数据分析、数据应用三者的统一。大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。大数据的核心就是预测,通过运用数学算法对海量数据进行分析,可预测事情发展的趋势,这将使人们的生活达到一个可量化的维度。大数据的特征可用四个V概括:数据量很大(Volume),通常指规模在10TB以上的数据集;数据类型多样(Variety),如声音、地理位置信息、文本、视频、网络日志、图片等;数据产生和处理速度快(Velocity);价值密度低(Value),在大量数据中有价值的信息相对较少,比如一段监控视频只有几秒的画面是有用的信息。
什么是精准营销
莱斯特·伟门认为要以消费者和销售商为中心,利用电子媒介等方式,建立消费者、销售商资料库,然后通过科学分析,对消费者进行细分,不仅用分析来引导销售商制定可行的销售推广方案,同时为生产商提供产品设计和制造参考。而对于现今流行的内容生产和消费来说,则是要进行受众细分,给予受众充分的选择权。投受众所好,有目的地内容生产。
在越发激烈的市场竞争面前,产品的利润空间不断压缩,在正确的时间将正确的产品销售给正确的消费者,是零售企业管理者普遍面临的一个难题。与此同时,消费者的消费习惯发生了重大的改变,消费者能通过各种手段了解到各式的产品信息,货比三家不说,越来越注重自己的消费体验。企业被迫要改变以往消费方式,注重消费者个性化需求并且预测到消费者,那么通过什么手段才能掌握这些数据信息并且将它运用到生产营销中去,最终达到获取利润。
1、数据收集
使用大数据的基础是大数据的收集。通过POS机、观测设备、移动终端、互联网、智能终端等收集企业与顾客的交互数据,同时在企业运营过程中重视对商品数据、销售数据、会员关系数据等交易数据的收集。另外,企业外部的数据如市场调查数据、专家意见、第三方机构数据等也可收集,并对数据进行清洗、重构、填补,保证数据质量,补充到数据库。根据企业的商业目标,对数据进行分类,将原始数据整理为目标数据集。
2、细分消费者
根据二八原则,企业80%的利润是由20%的重要消费者创造的。企业就针对这20%的消费者的需求进行重点满足。就避免了和同行竞争者正面交锋,企业只要把握住了这二十的消费者,那么营销资源的利用率和利用效果都能得到大幅度提升。差异化可能会丢掉一部分消费者,但是留住的这百分之二十的忠实消费者能够为企业带来真正的价值。同时消费者价值进行定位后,消费行为规律,预测其消费需求。
最著名的是市场购物篮分析,主要是将两件看似毫不相关的商品通过关联分析、神经网络分析。序列模式分析在此基础上,不仅考率商品间的关系,也考虑一些消费者在购买商品是的周期规律。而且从中找出差异产生的原因。
3、有目的的营销活动
在互联网发展之前,企业的营销活动都是盲目的,确立目标受众也是撒大网捞小鱼,被动的营销。互联网出现以后,企业有各种手段进行信息的采集和处理,在消费者细分和购物篮分析两种应用的支持下,将企业产品的卖点与消费者的需求进行匹配,将个性的商品推荐给不同类型的消费者,增加交叉销售和增量销售的机会。也便于企业设立明确的营销目标,比如优化消费者价值、获取新消费者、实现消费者保持、实现交叉销售和增量销售,最终提升企业利润。通过营销活动,将以前低价值消费者转换为重要消费者,并保持其忠诚度。在此期间,可用购买者效用图来评估营销方案可行性,利用大众价格走廊评判价格定制的合理性。
至于实体店和电商之间的消费者争夺战只是融合过渡阶段的一个表现,未来电商会通过线下实体的方式来进行体验式消费缺口的弥补,而实体企业也会通过互联网来进行消费者习惯搜集和处理,线上线下整合营销。企业要极尽所能拥抱变化,而非对变化掩目不见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12