
电商当道,实体行业好像迎来了寒冬,凛冽的网购风潮一阵接一阵刮倒一批批实体店,实体店高昂的租金成了压死骆驼的最后一根稻草。对于网购的优势,据中国消费者报调查表明:半数以上的人觉得网购价格便宜,30%的人觉得商品丰富选择更多,10%的人觉得便利快捷。电商在大数据收集和运用中更具灵活性,瞄准目标受众,从传统行业以产品为导向的传统营销模式像以消费者为导向的精确营销模式,此类的精准化营销也成了倒逼实体店改革的推手,那么实体店如何跟上步伐,运用好大数据。在互联网时代打场翻身仗。
什么是大数据
大数据(Big Data)是指数据规模大到不能使用传统分析方法在合理时间内进行有效的处理。大数据不仅仅指数据规模大,还包括数据处理和数据应用,是数据对象、数据分析、数据应用三者的统一。大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。大数据的核心就是预测,通过运用数学算法对海量数据进行分析,可预测事情发展的趋势,这将使人们的生活达到一个可量化的维度。大数据的特征可用四个V概括:数据量很大(Volume),通常指规模在10TB以上的数据集;数据类型多样(Variety),如声音、地理位置信息、文本、视频、网络日志、图片等;数据产生和处理速度快(Velocity);价值密度低(Value),在大量数据中有价值的信息相对较少,比如一段监控视频只有几秒的画面是有用的信息。
什么是精准营销
莱斯特·伟门认为要以消费者和销售商为中心,利用电子媒介等方式,建立消费者、销售商资料库,然后通过科学分析,对消费者进行细分,不仅用分析来引导销售商制定可行的销售推广方案,同时为生产商提供产品设计和制造参考。而对于现今流行的内容生产和消费来说,则是要进行受众细分,给予受众充分的选择权。投受众所好,有目的地内容生产。
在越发激烈的市场竞争面前,产品的利润空间不断压缩,在正确的时间将正确的产品销售给正确的消费者,是零售企业管理者普遍面临的一个难题。与此同时,消费者的消费习惯发生了重大的改变,消费者能通过各种手段了解到各式的产品信息,货比三家不说,越来越注重自己的消费体验。企业被迫要改变以往消费方式,注重消费者个性化需求并且预测到消费者,那么通过什么手段才能掌握这些数据信息并且将它运用到生产营销中去,最终达到获取利润。
1、数据收集
使用大数据的基础是大数据的收集。通过POS机、观测设备、移动终端、互联网、智能终端等收集企业与顾客的交互数据,同时在企业运营过程中重视对商品数据、销售数据、会员关系数据等交易数据的收集。另外,企业外部的数据如市场调查数据、专家意见、第三方机构数据等也可收集,并对数据进行清洗、重构、填补,保证数据质量,补充到数据库。根据企业的商业目标,对数据进行分类,将原始数据整理为目标数据集。
2、细分消费者
根据二八原则,企业80%的利润是由20%的重要消费者创造的。企业就针对这20%的消费者的需求进行重点满足。就避免了和同行竞争者正面交锋,企业只要把握住了这二十的消费者,那么营销资源的利用率和利用效果都能得到大幅度提升。差异化可能会丢掉一部分消费者,但是留住的这百分之二十的忠实消费者能够为企业带来真正的价值。同时消费者价值进行定位后,消费行为规律,预测其消费需求。
最著名的是市场购物篮分析,主要是将两件看似毫不相关的商品通过关联分析、神经网络分析。序列模式分析在此基础上,不仅考率商品间的关系,也考虑一些消费者在购买商品是的周期规律。而且从中找出差异产生的原因。
3、有目的的营销活动
在互联网发展之前,企业的营销活动都是盲目的,确立目标受众也是撒大网捞小鱼,被动的营销。互联网出现以后,企业有各种手段进行信息的采集和处理,在消费者细分和购物篮分析两种应用的支持下,将企业产品的卖点与消费者的需求进行匹配,将个性的商品推荐给不同类型的消费者,增加交叉销售和增量销售的机会。也便于企业设立明确的营销目标,比如优化消费者价值、获取新消费者、实现消费者保持、实现交叉销售和增量销售,最终提升企业利润。通过营销活动,将以前低价值消费者转换为重要消费者,并保持其忠诚度。在此期间,可用购买者效用图来评估营销方案可行性,利用大众价格走廊评判价格定制的合理性。
至于实体店和电商之间的消费者争夺战只是融合过渡阶段的一个表现,未来电商会通过线下实体的方式来进行体验式消费缺口的弥补,而实体企业也会通过互联网来进行消费者习惯搜集和处理,线上线下整合营销。企业要极尽所能拥抱变化,而非对变化掩目不见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10