
sas信用评分卡之番外哑变量的生成
哑变量是:举一个例子,假设变量“职业”的取值分别为:工人、农民、学生、企业职员、其他,5种选项,我们可以增加4个哑变量来代替“职业”这个变量,分别为D1(1=工人/0=非工人)、D2(1=农民/0=非农民)、D3(1=学生/0=非学生)、D4(1=企业职员/0=非企业职员),最后一个选项“其他”的信息已经包含在这4个变量中了,所以不需要再增加一个D5(1=其他/0=非其他)了。这个过程就是引入哑变量的过程,其实在结合分析中,就是利用哑变量来分析各个属性的效用值的。以上这段话是我在博客那边粘过来的,是个粉丝都知道我的画风不是这种。
今天介绍的就是哑变量啦。其实我个人是不爱用哑变量的,对于一些可以解释得过的变量还可以,就是怕衍生出来的变量你都不敢用,你知道吧。譬如吧,职业的变量,是不是工人的变量,然后你要是弄完模型,说是工人的加分,不是工人的反而是减分,那你在宣讲的时候,你要这么讲出来,人家产品怎么看你这个模型,你这会来解释什么工人信用比较好都没什么用了。这是一个不恰当的比喻哈,毕竟众生平等嘛。今天的代码我没在我的工作中用过,因为本身我的基层变量已经很多,除非我走投无路,不然我不会一次性生成这么多哑变量。因为生成评分卡那个代码我的粉丝疯涨,我好怕粉丝后面发现我就是个弱鸡。
%macropub_gg(data,id,var,out);
proc sort data=&data.(where=(&var.^='')) out=data1(keep=&id.&var.) nodupkey; by &var.;
run;
data &out.;
set &data.;
keep appl_id &var.;
run;
data data1_1;
set data1(keep=&var.);
prefix_&var.=compress("&var."||&var.);
run;
run;
data _null_;
set data1_1;
call symput (compress("var"||left(_n_)),compress(prefix_&var.));
call symput(compress("n"),compress(_n_));
run;
%put&var1. &var2.;
%doi=1%to&n.;
data data2;
set RONG_ZX_1
if &var.="&&var&i."then &&var&i.=1;
else &&var&i.=0;
keep &id.&&var&i.;
run;
proc sort data=data2; by &id.;run;
proc sort data=&out.; by &id.;run;
data &out.;
merge &out.(in=a) data2(in=b);
by &id.;
if a;
run;
%end;
%mend;
pub_gg(data=,id=, var=,out=);
pub_gg(data=,id=, var=,out=);
data:填入你的原始数据集
id:填入数据的主键
var:填入你要变成哑变量的主变量。
Out:输出数据集
结果数据集:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10