京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分卡之番外哑变量的生成
哑变量是:举一个例子,假设变量“职业”的取值分别为:工人、农民、学生、企业职员、其他,5种选项,我们可以增加4个哑变量来代替“职业”这个变量,分别为D1(1=工人/0=非工人)、D2(1=农民/0=非农民)、D3(1=学生/0=非学生)、D4(1=企业职员/0=非企业职员),最后一个选项“其他”的信息已经包含在这4个变量中了,所以不需要再增加一个D5(1=其他/0=非其他)了。这个过程就是引入哑变量的过程,其实在结合分析中,就是利用哑变量来分析各个属性的效用值的。以上这段话是我在博客那边粘过来的,是个粉丝都知道我的画风不是这种。
今天介绍的就是哑变量啦。其实我个人是不爱用哑变量的,对于一些可以解释得过的变量还可以,就是怕衍生出来的变量你都不敢用,你知道吧。譬如吧,职业的变量,是不是工人的变量,然后你要是弄完模型,说是工人的加分,不是工人的反而是减分,那你在宣讲的时候,你要这么讲出来,人家产品怎么看你这个模型,你这会来解释什么工人信用比较好都没什么用了。这是一个不恰当的比喻哈,毕竟众生平等嘛。今天的代码我没在我的工作中用过,因为本身我的基层变量已经很多,除非我走投无路,不然我不会一次性生成这么多哑变量。因为生成评分卡那个代码我的粉丝疯涨,我好怕粉丝后面发现我就是个弱鸡。
%macropub_gg(data,id,var,out);
proc sort data=&data.(where=(&var.^='')) out=data1(keep=&id.&var.) nodupkey; by &var.;
run;
data &out.;
set &data.;
keep appl_id &var.;
run;
data data1_1;
set data1(keep=&var.);
prefix_&var.=compress("&var."||&var.);
run;
run;
data _null_;
set data1_1;
call symput (compress("var"||left(_n_)),compress(prefix_&var.));
call symput(compress("n"),compress(_n_));
run;
%put&var1. &var2.;
%doi=1%to&n.;
data data2;
set RONG_ZX_1
if &var.="&&var&i."then &&var&i.=1;
else &&var&i.=0;
keep &id.&&var&i.;
run;
proc sort data=data2; by &id.;run;
proc sort data=&out.; by &id.;run;
data &out.;
merge &out.(in=a) data2(in=b);
by &id.;
if a;
run;
%end;
%mend;
pub_gg(data=,id=, var=,out=);
pub_gg(data=,id=, var=,out=);
data:填入你的原始数据集
id:填入数据的主键
var:填入你要变成哑变量的主变量。
Out:输出数据集
结果数据集:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05