
两种SAS代码实现变量的缺失值频数及占比
sas对缺失值的统计,可得出缺失值的频数及占比。以下为详细程序代码:
/*首先是创建示例数据集*/
data tmp;
infile datalines delimiter=",";
length var1 $8.;
length var2 8.;
length var3 $8.;
length var4 8.;
input var1 $ var2 var3 $ var4
@@;
datalines;
A,1,B,2.,3,C,.C,.,.,3
;
run;
如图得到下列数据集
然后统计数据集中缺失值和占比,先为字符型和数值型先分别设定一个format,然后直接对变量进行频数统计,再做一下简单处理,就可得到理想结果。
代码如下
proc format;
value num_f . = "0"
low-high = "1" ;
value $char_f " " = "0"
other = "1" ;
run;
/*频数统计*/
ods output onewayfreqs=tables;
proc freq data= tmp ;
tables _all_ / missing;
format _numeric_ num_f. _character_ $char_f.;
run;
ods output close;
数据集如下:
/*保留缺失变量、频数和占比*/
data miss;
length variable $50;
set tables;
variable = scan(Table,2,"“"); /*获取变量名*/
/*由于变量都是F_开头,因此可以用F_:来包含所有变量*/
value = max(of F_:);
if value = 0; /*缺失标志*/
keep variable frequency percent;
label variable = "缺失变量名" frequency = "缺失频数" percent = %nrstr("%缺失占比");
run;
以上为第一种方法;
下面用数组的方法进行实现。
/*找出缺失变量*/
data tmp11;
set tmp;
array arr1{*} _NUMERIC_ ;
array arr2{*} _CHARACTER_ ;
length variable $50;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
variable =vname(arr1(i)); /*数值型缺失*/
output;
end;
end;
do j = 1to dim(arr2);
if missing(arr2(j)) then do;
variable = vname(arr2(j)); /*字符型缺失*/
output;
end;
end;
keep variable;
run;
/*统计缺失频数和占比*/
proc sql noprint;
select count(*) into : N from tmp;
create table miss as
select variable label = "缺失变量名",count(*) as frequency label = "缺失频数",
input(compress(put(calculated frequency / &N.,percent10.2),"%"),best32.) as percent label = %nrstr("%缺失占比")
from tmp11
group by variable;
quit;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23