
SAS中最常用的10个命令
SAS是乔伊平时学习中常用到的数据处理软件之一。在处理大批量数据时,SAS不能说太好用呢。SAS也是学习起来十分简单的一个软件,掌握一些基本的命令,就可以满足日常的数据处理需求。
01
proc sort data= aout= bnodup; bystkcd date; run;
proc sort 是特别特别常用到的,因为许多后续命令都要求数据是按照一定格式排列的。比如下面会提到的merge和 first/last。此外,nodup允许我们使用sort命令来去除重复观测值。
02
datad; mergeb c; bystkcd date;run;
merge 可以在数据步中实现两个数据集合的合并。在by选项可以定义根据那些变量进行数据的合并。比如在上面给出的例子中,就是根据股票代码(stkcd)和日期(date)进行合并的。
03
datae; setb; bystkcd date; iffirst.date then delete; iflast.date then delete;run;
有时候,我们可能只需要一个对象所有日期的第一个或者最后一个观测值。这时候first和last就显得特别好用啦。先用前面所提到的sort先对数据集进行排序,然后在数据步先by排序的变量,接着就可以使用first和last对第一个和最后一个观测值进行处理。
04
proc expand data=crsp_m out=umd;
bypermno;
iddate;
convert ret = cum_return / transformin=(+1) transformout=(MOVPROD 6 -1);
quit;
如果需要滚动求和(Rolling average)或者滚动求积(Rolling product),proc expand是再方便不过了。以上面这个小程序为例子,我们要对crsp_m这个数据集进行处理,处理完成的数据集命名为umd。 上面的程序实现的就是对每一只股票(permno)在一个日期(id)计算一个累积6个月收益cum_return。其中cum_return可以表达如下:
cumreturn=(1+ret−1)(1+ret−2)(1+ret−3)(1+ret−4)(1+ret−5)(1+ret−6)-1
05
data cmpst;
setcmpst_raw;
dodate = rdq-90tordq+10;
output;
end;
run;
采用事件研究方法时,需要根据事件日构建事件窗。这时候可以利用上面例子的方式利用do实现,不过需要注意的是不要把output和end落下了,不然会报错的哦。上面的例子就是根据时间rdq,构建事件窗,事件窗是事件前90天到事件后10天。
06
proc means data= crsp_mnwaynoprint;
classyear permno;
varret;
outputout =stat mean= std= ;
run;
我们还可能还常常需要求一个对象在给定时间内某变量的均值,标准差等统计值。这时候就用proc means。 上面的例子中,输入是股票的月收益率,输出送每只股票每年的月收益率的均值和标准差。加入nway是因为避免在输出的数据集stat中输出总体均值,标准差。
07
proc import out= crsp_m datafile= "C:\crsp_m.csv" dbms=csv replace; getnames=yes;run;
proc export data= results outfile="C:\results.xlsx" dbms=xlsxreplace;
label;
run;
然后我们可能常常需要导入和导出数据xlsx,xls,和csv格式的文件。一般会用到proc import 和proc export。用法就如上,不过需要注意的是,dbms需要与文件后缀名保持一致,所以记得改哦。
08
proc rank data=crsp_mout=umd group=10;
bydate;
varcum_return;
ranksmomr;
run;
在一些情景中,需要将样本按照某一变量的大小分成几组。 利用proc rank, 就可以轻松通过group来定义你分组的个数,通过var给出分组所依据的变量。ranks 后定义了分组对应的变量名。
09
proc univariate data=crsp_m noprint;
whereexchcd = 1 ;
varsize;
bydate sic ;
outputout= nyse_bp pctlpts= 10 20 30 pctlpre= sizedec ;
run;
proc univariate的功能和proc rank很相似, 不过它输出的是一个样本中某一变量的分位数,根据这个分位数,我们可以进一步地对样本进行分组。 那在什么情况下我们会用到proc univariate呢?一个简单的例子就是我们需要对A 样本根据x 变量进行分组,但是分组是基于在B样本中x变量的分位数。 这时候先利用proc univariate B样本得到x变量的分位数,然后在用得到的分位数来对A样本进行分组。在读文献的时候,经常会遇到样本包含了NYSE,NASDAQ和AMEX三个交易所的股票,然后进行分组的时候只用NYSE子样本(NYSE Breakpoints)。
10
proc sql; create tablecrsp_m3as
selecta.*, b.*
fromcrsp_m2asa,nyse_bpasb
wherea.date=b.dateanda.sic = b.sic;
quit;
除了在数据步使用merge来进行数据集的合,你还可以使用proc sql来进行merge。他们两者的功能相似,不过在进行一对多的合并的时候使用merge容易出错,所以这时候对推荐使用sql。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23