
数据洪流下的企业未来
大数据正在成为企业所需面临的巨大挑战,这种挑战不仅前所未有,而且对于企业而言,这并非市场的波动,或经济的周期那么简单。这意味着一种新的生产方式和生产工具的应用,也意味着人们将以新的方式来理解和传播知识、信息。
市场需要越来越多的知识整合者,灵活“善变”地应对市场需求。在此大数据洪流面前,创造大数据硬件条件的企业本身如何认知这一变革呢?LSI公司副总裁GautamSrivastava在近日接受了采访,谈论了他对于数据洪流下企业变革的认知。
LSI是一家半导体元器件设计生产厂商,产品主要用于优化网络存储的性能。这家企业去年业务收入达20.8亿美元,年增长率近10%。在2011年上半年,这家企业将外部存储业务以4.8亿出售给NetApp,随后以3.22亿美元收购了固态硬盘芯片厂SandForce。这意味着这家传统的服务器优化服务商将业务重心完全放到了云数据和移动网络上。
GautamSrivastava认为近年来IT行业的巨大变革都意味着数据正在疯狂增长。“从视频的大幅增长,到Facebook等社交网络产生内容量的猛增,企业和消费者产生的数据量在不断地增加,我们预计这个数据量以每年40%-50%的速度再增长。而与此同时,我们的整体技术架构的增长是缓慢的,大概年增长2%-3%。”GautamSrivastava说,他认为,人们将迟早要面对有限资源与膨胀信息之间的取舍。
另一个巨大的需求在于数据正在要求可移动与被分享,百度和腾讯近年来建立了巨大的数据中心就是为了适应数据的大幅度增长,而一旦这些数据被要求可以移动分享,则意味着人们使用数据将耗费更多的资源。
“这意味着中国未来的移动数据市场将有着非常巨大的增长,我估计这个数字是未来3年内有50%的增长,互联网用户将从5亿人增长到7.5亿,这基本上是很多国家市场的增长集合了。”GautamSrivastava说。
移动市场也拥有着巨大的发展机会,目前中国的移动用户约10亿人左右,这类用户也将迅速转化为移动互联网用户,这一市场拥有高市场渗透率和转化率。
此外中国政府对于互联网行业有着长期发展战略,政府也在正在复杂的互联网环境中寻求一个长期优化的发展方案。
更重要的是,中国的人口基数决定了未来五年内,将是中国年轻人拥有越来越多消费能力的时期,而他们从一开始就生活在“互联网时代”。
大数据更需要本土化
“为了迎合这一庞大的趋势,我们从一开始就意识到中国将从一开始就一个高端市场,很多市场问题都必须在中国本土环境下得以解决。”GautamSrivastava说。
G得出这一结论,一方面是看到了全球范围内工程人才出现短缺,而中国已培养大批年轻工程技术人员,中国国内市场需求飙升,需要本土化的技术解决方案,这也意味着中国将成为大数据专利等知识产权最为密集的地方。而这些知识产权将可以再全球范围内使用。
“中国可以说是硅谷的延伸,无论是客户还是知识产权。中国拥有越来越多硕士学位的技术人员,与硅谷类似,而中国客户与我们在硅谷遇到的客户一样,最为关注的问题都是如何解决数据洪流。”
“华为和中兴这样的企业未来增长机会巨大,”GautamSrivastava说,“因为未来中国互联网的移动性将增长迅猛,移动网络快速发展意味着对华为、中兴等企业的技术需求将大涨。”
除此之外,对于原有资源的优化和节能也将迎来市场的热捧。在迅速增长的数据消费面前,有限的基础设施资源有着再优化的需求。这样的市场趋势与节能趋势是相一致。
此外,基础设置智能化也将成为一个关键趋势。企业将需要针对不同的细分市场来制定不同的产品与服务。这也意味着,企业内部数据将有能力对不同类型的客户排序区分,这不仅意味着效率的提升,也意味着创新服务和产品的可能。
整合型人才将更为抢手
“一个有趣的发现是,我们发现大数据的发展催生出一种需要,就是企业需要对大数据进行快速甚至实时的分析。”GautamSrivastava说。
十年前,企业高管们所需要做的是,收集整年或者半年的数据,在做财报的时候对全年数据进行分析和整合,而现在不管是CMO还是CFO,CTO,都需要及时地分析大量相关数据,并敏捷低应对市场变化。
更重要的是,企业与市场沟通的方式也在发生变化,以往企业与市场的沟通是单向的。企业仅仅需要给出信息,找到合适的渠道去发布信息。而现在网络成为了企业与终端客户之间互动的主要工具,越来越多的企业在网络上及时地描述自我前景。单纯的技术门槛已经无法成为说服或者吸引市场的方式,整合数据,从技术提供商转变为解决方案的供应商,才是网络市场,这个信息爆炸的时代下,企业的生存之道。
“我们意识到大数据带来的变化,我们越来越需要这样的人才:他不仅了解技术本身,更了解客户遭遇问题的环境及背景,并懂得如何利用技术来提供解决方案。”GautamSrivastava认为,“另一个关键在于,我们需要越来越多的整合型人才,他不仅有能力把知识产权,客户知识产权结合在一起,而且能够最终设计出整个架构和方案。这是我们看到的全新趋势。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24