
用R语言做网页爬虫和文本分析
受到这篇情感分析的文章和这篇网页爬虫指南的双重启发,我决定尝试抓取并分析 Goodreads 网站的书评数据。这个项目将会呈现一个从数据收集到机器学习建模分析的完整案例,我在中途犯下的错误也会一并呈现。本文将以5本流行的爱情故事书的评论为研究对象,我很自觉地选了同类型的书,使得评论具有可比性。这五本书也足够畅销,我们可以轻松获取上千条评论,如果你不喜欢爱情故事,你也可以选择其他类型的书做研究。
为了使这篇文章更易读,我把它分成了三个部分:
Part 1: 网页抓取
Part 2: 探索性数据分析和情感分析
Part 3: 基于机器学习的预测分析
这篇文章更新到了Part 1,后续部分会持续更新。
Part 1 网页抓取
Goodreads上的评论很容易抓取,在每条评论左侧都有一个非本文类型的排名变量。然而评论页面的切换是通过一个javascript按钮而不是html链接来实现的,处理起来有一点难度。不过好在这个问题有一个简单有效的解决方法,只要使用RSelenium包就可以了,点 这里 可以阅读该包的小品文。
起步
让我们先加载好要用的包并定义几个变量
library(data.table) # 为了rbindlist函数
library(dplyr) # 为了数据整理
library(magrittr) # 为了管道操作符 %>%
library(rvest) # 为了read_html函数
library(RSelenium) # 为了使用JavaScript进行网页抓取
url <- "https://www.goodreads.com/book/show/18619684-the-time-traveler-s-wife#other_reviews"
book.title <- "The time traveler's wife"
output.filename <- "GR_TimeTravelersWife.csv"
请注意,对每本书而言我需要改变上述变量的值并重新运行脚本。如果你觉得麻烦,可以用代码自动实现这个过程,但此处我就采取手动的做法。这么做也可以避免Goodreads'网站服务器过载。
让我们启动RSelenium服务器,利用Firefox浏览器可能会有些问题,为此我重新安装了一个比较旧的版本
startServer()
remDr <- remoteDriver(browserName = "firefox", port = 4444) # instantiate remote driver to connect to Selenium Server
remDr$open() # 打开浏览器
remDr$navigate(url)
这些指令会打开浏览器并转向你制定好的url,之后我们需要建立一个数据框,方便后续数据的操作。
global.df <- data.frame(book=character(),
reviewer = character(),
rating = character(),
review = character(),
stringsAsFactors = F)
现在万事俱备,可以开始网页抓取了。
网页抓取流程
为了提取我们需要的内容,对于每本书,我们将扫描其100页的评论。这里我去掉了循环,只扫描一页的内容,并对代码的工作原理逐行解释。
首先,我们需要定义书评在页面中的位置。使用SelectorGadget就能完成这一步骤,利用Chrome的一个拓展能帮助你识别CSS selector。只要找到了正确的CSS selector(这里是#bookReviews.stacked),将其传递给RSelenium服务器的findElements函数就可以了。
reviews <- remDr$findElements("css selector", "#bookReviews .stacked")
我们把书评的html代码先提取出来,然后再分离其中的内容。
reviews.html <- lapply(reviews, function(x){x$getElementAttribute("outerHTML")[[1]]})
reviews.list <- lapply(reviews.html, function(x){read_html(x) %>% html_text()} )
reviews.text <- unlist(reviews.list)
现在我们已经用list的格式保存了评论,然而其中依旧混杂着很多无关内容,我们需要利用正则表达式(regex)来清洗数据。
利用正则表达式清洗数据
依照我的文本分析经验,正则表达式既是天使也是魔鬼。通过它你可以用一行短短的命令就把字符串中所有的非字母元素移除,可它本身也是一门晦涩难懂的语言,使你在重读自己的代码时会倍感艰辛。所以如果你能读懂下面的代码做了些什么,我会倍感欣慰。
# 移除字母和符号外的元素
reviews.text2 <- gsub("[^A-Za-z\\-]|\\.+", " ", reviews.text)
# 移除换行符和多余的空格
reviews.clean <- gsub("\n|[ \t]+", " ", reviews.text2)
关于正则表达式,下面几个网址很有用:
http://www.regular-expressions.info/
http://stat545.com/block022_regular-expression.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
用表格格式存储评论数据
现在我们已经得到了很干净的评论数据,然而由于html暗含的数据结构,我们会遇到这样的问题:对每一条评论,评论者的姓名和评分会存在同一个字符串里,而评论内容存在后一个字符串中。此外,预览评论系统会使得每个评论的开头在字符串中重复出现两次。我们需要对这些做做处理,再次使用正则表达式,我们将得到表格格式的数据。
我们先数数一共有多少条评论(即字符串数量的一半),然后建立一个临时数据框来存储数据。
n <- floor(length(reviews)/2)
reviews.df <- data.frame(book = character(n),
reviewer = character(n),
rating = character(n),
review = character(n),
stringsAsFactors = F)
我们遍历所有的字符串,逐评论地提取需要的内容并存在数据框里。这里我们采用for循环实现遍历,但如果是工业级应用,你应该更喜欢向量化处理。
下面的代码可能有点难懂,我先来解释下:
1. 第一部分,我先列举了可能出现在评论人姓名和评分之间的一些表达式,再结合正则表达式来确定姓名的结束位置,以此提取姓名。
2. 第二部分,我列举了可以出现在评分之后的表达式,有时这些表达式并不会出现,因此我得把这一情况也考虑进去。通过这两种方式,我们就可以提取评分了。
3. 第三部分,我把每个评论的开头移除了,我会记录50个字符重复出现的起始位置和结束位置。有时,评论可能篇幅较短还不到50字符,这里就用和第二部分相似的方法处理。
4. 最后,请注意这个循环的结构,我并没有一一循环字符串,而是遍历了评论,每个评论包含两个字符串,因此用2*j和2*j-1索引。
for(j in 1:n){
reviews.df$book[j] <- book.title
# 提取评论人姓名
auth.rat.sep <- regexpr(" rated it | marked it | added it ",
reviews.clean[2*j-1])
reviews.df$reviewer[j] <- substr(reviews.clean[2*j-1], 5, auth.rat.sep-1)
# 提取评分
rat.end <- regexpr("· | Shelves| Recommend| review of another edition",
reviews.clean[2*j-1])
if (rat.end==-1){rat.end <- nchar(reviews.clean[2*j-1])}
reviews.df$rating[j] <- substr(reviews.clean[2*j-1], auth.rat.sep+10, rat.end-1)
# 移除评论中重复的部分
short.str <- substr(reviews.clean[2*j], 1, 50)
rev.start <- unlist(gregexpr(short.str, reviews.clean[2*j]))[2]
if (is.na(rev.start)){rev.start <- 1}
rev.end <- regexpr("\\.+more|Blog", reviews.clean[2*j])
if (rev.end==-1){rev.end <- nchar(reviews.clean[2*j])}
reviews.df$review[j] <- substr(reviews.clean[2*j], rev.start, rev.end-1)
}
现在我们的临时数据框已经填写完毕,我们可以把它的内容转移到主数据框中了。
global.lst <- list(global.df, reviews.df)
global.df <- rbindlist(global.lst)
最后,我们需要告诉RSelenium点击进入下一页的按钮,通过传递利用SelectorGadget定义CSS selector可以实现这个功能。同时,Relenium的效率比较低,可能在循环中不能及时响应,因此我们在每个循环的末尾让R等待3秒。
NextPageButton <- remDr$findElement("css selector", ".next_page")
NextPageButton$clickElement()
Sys.sleep(3)
结束所有循环后,我们要把最终结果保存成一个文件。
write.csv(global.df,output.filename)
最终结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25