
卷积神经网络 (Convolutional Neural Network, CNN) 是一种深度学习模型,常用于计算机视觉任务。除了常见的卷积层、池化层和全连接层,CNN 中还有一个重要的组件就是归一化层 (Normalization Layer)。在本文中,我们将介绍归一化层的作用以及其在 CNN 中的应用。
归一化层的作用是对网络的输入或某一层的输出进行标准化处理,使得数据分布更加平稳,有利于网络训练的稳定性和泛化能力。通俗来说,就是将输入数据尽量映射到均值为0、方差为1的标准正态分布上,以便于后续层的学习。具体地,归一化层可以分为以下两种类型:
批归一化是由 Ioffe 和 Szegedy 在 2015 年提出的方法,它是目前最常用的归一化方法之一。批归一化层的输入数据是一个 batch 的样本,即一个 batch 内的所有样本共同完成标准化处理。具体地,假设 $x$ 是一个 batch 内的输入数据,$mu_B$ 和 $sigma_B^2$ 分别是这个 batch 的均值和方差,则批归一化的计算公式如下:
$$hat{x}=frac{x-mu_B}{sqrt{sigma_B^2+epsilon}}$$
其中 $epsilon$ 是一个小常数,以防止分母为零。在标准化之后,我们还需要将数据映射回原来的分布,即通过一个可学习的缩放参数 $gamma$ 和平移参数 $beta$ 来实现:
$$y=gamma hat{x} + beta$$
可以看出,批归一化层中,除了均值和方差外,还有两个可学习的参数 $gamma$ 和 $beta$,它们的作用是恢复网络的表达能力。
批归一化的优点在于可以增加模型的泛化性,减少过拟合风险;同时也能够加速训练过程并提高模型的收敛速度。但是,在某些情况下,批归一化可能会对模型的表现产生负面影响。例如,当 batch size 很小时,估计出的均值和方差可能存在较大偏差,导致模型性能下降;此外,批归一化的计算量比较大,因此在嵌入式设备等资源受限的场景中可能不太适用。
组归一化是在批归一化的基础上提出的方法,它将样本分为若干个 group,并针对每个 group 进行标准化处理。假设输入数据 $x$ 的 batch size 为 $N$,通道数为 $C$,则可以将其分为 $G$ 个 group,每个 group 包含 $C/G$ 个通道。组归一化的计算公式如下:
$$hat{x}{n,c}=frac{x{n,c}-mu_g}{sqrt{sigma_g^2+epsilon}}$$
其中 $mu_g$ 和 $sigma_g^2$ 分别表示 $g$ 组中所有通道在某个位置 $(n,h,w)$ 上的均值和方差,即:
$$mu_g=frac{1}{NHW}sum_{n=1}^{N}sum_{h=1}^{H}sum_{w=1}^{
W}sum_{c in G} x_{n,c,h,w}$$
$$sigma_g^2=frac{1}{NHW}sum_{n=1}^{N}sum_{h=1}^{H}sum_{w=1}^{W}sum_{c in G}(x_{n,c,h,w}-mu_g)^2$$
与批归一化不同,组归一化的均值和方差是在每个 group 内计算的,因此不受 batch size 影响,可以适用于小批量训练。此外,由于没有 BN 中需要跨样本计算的均值和方差,组归一化的计算量相对较小,适合于大规模数据集和高分辨率图像处理。
除了批归一化和组归一化,还有其他类型的归一化方法,例如层归一化 (Layer Normalization)、实例归一化 (Instance Normalization) 等等。这些方法在具体场景下可能会更优秀,但是我们不在本文中进行细节介绍。
总之,归一化层是卷积神经网络中一个非常重要的组件,它可以提高网络的稳定性和泛化能力。在实际应用中,我们可以根据具体情况选择不同的归一化方法,并结合其他技巧如学习率调整、正则化等来提高模型效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18