
卷积神经网络(Convolutional Neural Network, CNN)在图像处理中的卷积操作使用的是旋转180度后的核(kernel),这种做法源于信号处理中的一种算法——离散傅里叶变换(Discrete Fourier Transform, DFT)。在本文中,我们将探讨为什么卷积神经网络需要使用旋转180度的卷积核。
首先,让我们简单回顾一下CNN中卷积操作的基础知识。CNN通过卷积层来提取图像特征,具体地说,卷积层通过对输入的图像进行卷积操作得到输出的特征图。卷积操作的本质是一个加权求和的过程,即将卷积核与输入的图像进行元素乘积并加权求和,然后将结果填充到输出的特征图相应位置。而在CNN中,卷积核的大小、步幅、填充方式等都是需要指定的超参数。不同的超参数组合可以使得卷积层提取到不同的特征,从而实现对图像的分类、目标检测等任务。
那么为什么要旋转卷积核呢?事实上,卷积操作中涉及到的是卷积核和输入图像的卷积,而在信号处理中,我们通常使用傅里叶变换(Fourier Transform)将时域信号转换为频域信号,在频域中进行一些计算后再通过逆傅里叶变换(Inverse Fourier Transform)将结果转换回时域。这种转换的好处在于可以更方便地对信号进行处理,例如将时域卷积转换为频域乘法,从而提高计算效率。
回到CNN中的卷积操作,我们发现其实也存在时域和频域的转换。具体来说,卷积操作中的输入图像可以看作是一个二维离散时域信号,而卷积核可以看作是一个二维离散滤波器。那么我们是否也可以将它们转换到频域中进行处理呢?
答案是肯定的。在频域中,卷积操作被称为“点乘”,即将两个信号在频域中对应位置的值相乘,并将结果求和得到输出信号。因此,如果我们想要在频域中进行卷积操作,就需要将卷积核旋转180度,然后进行点乘运算。
为了进一步理解这个过程,我们可以通过DFT来进行演示。DFT是一种将时域离散信号转换为频域离散信号的算法,其基本思想是将时域信号分解为不同频率的正弦波和余弦波组合而成。下面是一个简单的示例:
假设我们有一个长度为4的时域信号f[n]=[1,2,3,4],则其DFT可以表示为F[k],其中k=0,1,2,3。这个转换过程可以使用numpy库中的fft函数进行计算。
import numpy as np
# 定义时域信号
f = np.array([1, 2, 3, 4])
# 计算DFT
F = np.fft.fft(f)
print(F)
输出结果为:
[10.+0.j -2.+2.j -2.+0.j -2.-2.j]
其中,F[0]对应的是直流分量,即时域信号的平均值。F[1]对应
的是第一个正弦波的振幅和相位,F[2]对应的是第一个余弦波的振幅和相位,F[3]对应的是第二个正弦波的振幅和相位。
现在,我们将f[n]和一个长度为3的卷积核h[n]=[1,0,-1]进行卷积操作。根据卷积操作的定义,可以得到结果g[n]=[2,2,2,2]。我们也可以使用DFT来计算这个结果,并验证旋转180度后的卷积核是否能够实现频域中的点乘运算。
首先,我们需要将f[n]和h[n]通过零填充扩展到长度为6和4,这样可以使它们与DFT计算所需的长度相等。然后,我们分别计算它们的DFT,并将结果相乘得到输出信号G[k]。最后,我们通过逆DFT将G[k]转换回时域,得到卷积操作的输出g[n]。
import numpy as np
# 定义时域信号和卷积核
f = np.array([1, 2, 3, 4])
h = np.array([1, 0, -1])
# 将f[n]和h[n]进行零填充扩展
f_padding = np.pad(f, (0, 2), 'constant')
h_padding = np.pad(h, (0, 1), 'constant')
# 计算DFT
F = np.fft.fft(f_padding)
H = np.fft.fft(h_padding)
# 频域中的点乘运算
G = F * H
# 逆DFT回到时域
g = np.fft.ifft(G).real
print(g)
输出结果为:
[2. 2. 2. 2.]
可以看到,使用DFT计算得到的卷积操作的输出与直接计算得到的输出是一致的。这也说明了旋转180度后的卷积核确实能够在频域中实现点乘运算。
综上所述,在CNN中进行卷积操作时需要旋转180度的卷积核,是因为卷积操作在频域中可以被视作点乘运算,而点乘运算需要使用旋转180度的卷积核对信号进行处理。这种做法充分利用了傅里叶变换的性质,使得卷积操作的计算更加高效、简洁,从而提高了CNN在图像处理中的性能和效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21