京公网安备 11010802034615号
经营许可证编号:京B2-20210330
先回忆一下之前用到的例子。
将其输入R语言中:
age <- c(25, 34, 59, 60, 20) #患者年龄
type <- c(1, 2, 2, 2, 1) #糖尿病类型
status <- c("poor", "improved", "excellent", "poor", "excellent") #病情
comorbidity<- c(TRUE, FALSE, FALSE, TRUE, FALSE) #出现并发症
mydata <- data.frame(age, type, status, comorbidity) #将数据框命名为mydata
查看mydata:
mydata
## age type status comorbidity
## 1 25 1 poor TRUE
## 2 34 2 improved FALSE
## 3 59 2 excellent FALSE
## 4 60 2 poor TRUE
## 5 20 1 excellent FALSE
接下来我们就以mydata为例,介绍一下如何对数据框进行简单的操作。
了解一个数据框
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
面对数据,第一步就是要了解它有多少条记录(或多少个case/ observation ),有多少个变量(variable)、分别是哪些。
## 获取数据框的维度(几行、几列)
dim(mydata)
[1] 5 4
## 查看数据框中的所有变量名(列名)
names(mydata)
[1] "age" "type" "status" "comorbidity"
## 查看数据框的整体结构(维度、变量名、数据类型、数据内容)
str(mydata)
'data.frame': 5 obs. of 4 variables:
$ age : num 25 34 59 60 20
$ type : num 1 2 2 2 1
$ status : Factor w/ 3 levels "excellent","improved",..: 3 2 1 3 1
$ comorbidity: logi TRUE FALSE FALSE TRUE FALSE
如何提取数据框中的行和列
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
2种方法:
1. 数据框后加[ , ]。逗号前是行,逗号后是列。如果没有指定是哪一行或哪一列,默认为所有行/列。
## 提取第一行
mydata[1,]
age type status comorbidity
1 25 1 poor TRUE
## 提取第一列
mydata[,1]
[1] 25 34 59 60 2
## 提取某几行或某几列
## 提取1~3行
mydata[1:3,]
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
## 提取第1和第5行的1、2、4列
mydata[c(1,5),c(1,2,4)]
age type comorbidity
1 25 1 TRUE
5 20 1 FALSE
## 变量很多时,用列名来提取更方便
mydata[c(1,5),c('age','type','comorbidity')]
age type comorbidity
1 25 1 TRUE
5 20 1 FALSE
2. 另一种提取列的方法是,在数据框后加 $,然后再加要提取的列名。
## 提取age这一列
mydata$age
[1] 25 34 59 60 20
获取满足特定条件的数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
1.提取满足某一个条件的数据。
例如,在病情status这个变量中,有poor, improved 和 excellent这三类,现在想获取病情最稳定、恢复最好的患者信息。也就是说,我们希望获得status为excellent的病例,即选择满足mydata$status=='excellent'的行,以及被选中的行的每一列。
mydata[mydata$status=='excellent',]
age type status comorbidity
3 59 2 excellent FALSE
5 20 1 excellent FALSE
此外,还可进一步提取,例如,想获得病情status为excellent的患者中,并发症comorbidity的情况。换句话说,就是,想提取comorbidity的信息,但这些信息必须是病情最稳定的几位患者的。
## 具体操作如下:先提取comorbidity,再设置status的条件
输入语句:mydata$comorbidity[mydata$status=='excellent']
[1] FALSE FALSE
2.提取满足多个条件的数据。
例如,想提取年龄age大于等于20岁,且小于35岁的病例。在R中,用&这个符号表达『并且』。用一个小竖杠 | 表达『或者』。
mydata[mydata$age>=20 & mydata$age<35,]
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
5 20 1 excellent FALSE
3.subset()函数,既可用来选择行,也可选择列,当然也可以用来提取满足特定条件的内容。
# 选择行/满足特定条件的行
subset(mydata, mydata$age>=20 & mydata$age<35)
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
5 20 1 excellent FALSE
# 选择列
subset(mydata, select = c('age','status'))
age status
1 25 poor
2 34 improved
3 59 excellent
4 60 poor
5 20 excellent
有缺失数据怎么办
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
由于原来的数据框中没有缺失数据,这里我们来构造一个新的记录(observation),让这个记录中全部都是缺失值。
mydata[6,] <- NA
mydata
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
4 60 2 poor TRUE
5 20 1 excellent FALSE
6 <NA> <NA> <NA> <NA>
1. 只保留无缺失的observations。如果希望将无缺失版本的数据框保存起来,要记得把na.omit(mydata)的结果赋值给新的对象。
mydata_no_NA <- na.omit(mydata)
mydata_no_NA
age type status comorbidity
1 25 1 poor TRUE
2 34 2 improved FALSE
3 59 2 excellent FALSE
4 60 2 poor TRUE
5 20 1 excellent FALSE
2. 查看哪个数据为缺失值。需要用到2个函数,这里提醒大家,如果R的语句太复杂,那么可以先从最中心的部分读起,一层括号一层括号地向外扩展。
例如,下面的语句,可以先看最中间的is.na(mydata$age),意思是对age这列中的每个数据进行一次检验,返回『是否为缺失值』的逻辑型结果,即TRUE 或者 FALSE。再看which()这个函数,它返回的是前面这一串TRUE和FALSE中,出现TRUE的顺序号。
从下面的结果我们可以看到,只有第6个数据是TRUE。
which(is.na(mydata$age))
[1] 6
is.na(mydata$age)
[1] FALSE FALSE FALSE FALSE FALSE TRUE
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24