
作者:丁点helper
来源:丁点帮你
上一篇文章介绍了一般线性回归的典型操作,并且留了一个思考题。感谢小伙伴的参与,大家很厉害,没有被迷惑到,线性回归获得的系数代表的是相关关系,而非因果关联。
回归是相关不是因果
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
因为,回归的使用仅能说明数据之前存在关联,但这种关联是否真正代表了两者的内在联系还需要更深入的研究。
之所以采用回归分析,就是通过纳入多个自变量,达到控制混杂因素的作用,但是我们无法纳入所有可能的因素,即所谓的“遗漏变量”(omitted variables),从而导致回归的结果不准确。
例如,探究教育程度与收入的关系,如果我们在回归分析中没有纳入“父母的平均教育程度”这个变量,此时,这个变量就被称为“遗漏变量”。
根据常识,父母的教育程度应该是孩子未来收入的重要影响因素,同时也几乎决定了孩子的教育程度。因此,遗漏这个变量有可能让我们得出有偏差的结果(一般会高估个人教育程度对未来收入的影响)。
同时,如果X与Y之间的关系,不是X导致Y,而是Y导致X(称作“反向因果”),此时的回归分析也会得出有统计学意义的结果(总体回归系数不为0)。
但这个结果无法显示相关关系的方向,即无法判断是X→Y,还是Y→X,从而误导我们的判断。
例如,常有人说,一个国家保护私人产权制度越完善,这个国家就越富裕。
这意味着完备的产权促进了国家经济的发展,于是人们建议:贫穷的国家都要实施良好的私有产权保护。
不可否认,产权对提升经济发展的确有作用。但我们不能忽略这其中的反向因果。
也就是说,很有可能是一个国家富裕之后才开始注意产权保护,产权制度才会更加完善,由此,并非是产权促进了经济的发展,而是经济发展促进了产权的完善。
所以,我们不能只从两组数据的相关就推测因果,除了那些没有纳入考虑的变量,反向因果也有可能对我们进行误导。
由此来看,回归分析更像是一种探索,它提供某种线索,启示我们下一步的研究方向。
回归诊断——残差图
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
回归分析有时候之所以不能揭示因果,除了上面谈到的遗漏变量效应和反向因果外,某些假设条件的违反也会导致回归的结果不准。
所以,我们要牢记做完回归并不意味着万事大吉,进行必要的诊断性分析十分必要。
回归诊断,就是通过各种方法来验证回归分析的假设条件以及其他因素的影响,这里我们重点讲讲回归LINE条件的诊断和多重共线性的识别。
前文我们提到过做线性回归的时候一般需满足:线性、独立、正态、方差齐(LINE)条件。
对这些假设条件的诊断其实有各种各样的办法,其中一种使用十分广泛,简单易学,同时效率也比较高的做法是作残差图。
画残差图,一般是以回归分析Y的预测值为横轴,以残差为纵轴做散点图。
如果打开SPSS,可以看到回归分析模块中有很多种残差:未标准化、标准化、学生化等等。
简单起见,大家可以选择所谓的“学生化”残差。
不知有同学是否了解过,什么叫“学生化残差”?(不能再古怪了!)
实际上,它和我们前面学习的t检验还有联系。
t检验发明者的笔名就叫“学生”,即student,所以这里的“学生化残差”可以简单理解为一种t变换(与标准化,即z变换类似)。
具体的细节感兴趣的同学可以去查一查。在我们的具体应用中,采用“学生化残差”和“预测值”做散点图还是挺简单的,而且可以发现一些问题。
一条原则:如果线性回归效果较好,则残差图的各个散点会围绕着“残差=0”水平线上下均匀分布,如下图中的红线。
这可能是最简单的诊断方法,通过观察散点在上述红线上下的分布情况来推测回归分析的质量,同时提示需要改进的方向。
例如,下面这张散点图,就提示Y与自变量X之间可能存在某种曲线关系。
当增加某个自变量的二次项后,回归被改善。
没有添加任何二次项
增加x1的二次项,拟合效果提示
除此以外,线性回归诊断另一个常见的问题是,当自变量X之间互相存在高度相关性时,会导致回归方程估计结果不稳定,回归系数的标准误大大增加(可以通过数学公式证明,标准误计算的分母因为X之间的相关系数而变大,从而整个标准误变小),称为共线性。
共线性最大的问题是,导致本身有意义(P<0.05)的结果变为无意义(P>0.05)。
SPSS在线性回归分析模块也有专门的共线性诊断指标,我们在分析时点选即可:
根据上一篇文章中的例子,共线性诊断的的指标均在要求之内,提示共线性问题不严重。
最后,如果线性回归的LINE没有通过诊断分析,需要怎样改进呢?如下图,大家作为参考,这些内容后期有机会我们逐渐给大家讲解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28