
R软件导入数据_r语言怎么导入数据_R软件导入数据
R软件导入数据
1.Rcmdr安装包导入数据:
1.安装Rcmdr包,输入:
install.packages(“Rcmdr”)
回车
接着就让其自动操作,选择一下镜像站就可以了。
2.接着运行,输入:
library(Rcmdr)
回车
就会出现附件的图形界面,在这个界面上可以实现几乎所有的统计分析方法。
以后运行,只要输入 library(Rcmdr) 即可。
————————————————————————————
2.鼠标导入:
另外数据导入还可以采用如下方式:read.table(choose.files())
——————————————————————————————
3.更改目录,语句导入:
手动方式定义自己的默认文档。导入数据。
1.右键R软件快捷方式=》属性=》起始位置=》输入目录名如:D:/data
2.打开R
3.输入 getwd() 回车怎么样,默认目录变成D:/data了吧。
4.输入read.table(“文件名.格式”)回车。导入成功。
以后只需把数据这个默认文件夹就可以了。
若想将数据转化为对数形式,输
入下面语句:
关键词:R软件 [] [,] 对数 log[,
da=read.table(“x.txt”,header=T)
注:da是这里取的名字。
读取数据时,txt文件第一行可以是数据标签。header=T则会从第二行开始取数据,否则从第一行开始取。
>daa=log(da[,1])
这里[,]是什么意思呢?维度的意思。
R软件初步:导入数据
因为我的txt数据只有一列所以我这里输入的是[,1]
好了这样就转化为对数形式了。
R如何导入数据
请问R软件如何导入数据,我在论坛中看到了相应的问答,但是没有得到答案,请大家帮忙,谢谢!说是要放在一个目录下,是什么意思,是将数据与R安装放在一个目录下吗?
文件不需要跟R安装文件放在同意文件夹下。 你只需要把R的working directory 改成数据所在文件夹就行了。
有几种不通的读入方法,根据你的数据类型, read, read.csv, read.table…..
若果数据是.csv,如下:
read.csv“<name_of_your_file>” 应该就可以了。
R的working directory 在哪里??
就是R软件→文件→改变工作目录→数据所在的目录,前面说的working directory就是工作目录
首先看你的数据文件是什么类型,假如是txt文档并且放在C盘目录文件下,程序就是 read.table(“C:/***.txt”)
如果是SPSS文件就是read.spss(“C:/***,sav”)
如何用R软件导入excel数据表中数据
请问如何在R中引用电子表格中的数据,我看了有关数据导入的文献,可是不太明白,期盼知道的同仁给予说明!
把EXCEL数据转换成单表格格式.csv,然后利用read.csv读入
我有一篇关于R数据导入导出的文章,可是写的不是很详细,
还想请教一下 如何对指定目录的数据导入
我用read.table(“file”…)格式导入 可是显示 文件不存在 但事先我已经将文件放在 文件bin 中了
excel表可以先转化成“文本文件(制表符分隔)”,
用函数read.delm()读该文本文件! 即>rd<-read.delim(“.txt”) |
如果你有什么细节的问题可以采用help命令,help(read.table)
可以下载这个包 xlsReadWrite
然后可以用read.xls
将excel表格转换成“文本文件(制表符分隔)”,
用read.table(“.txt 文件的绝对路径”,header=T)
或者转换成.csv也行,用法与read.table()一样
只需改成read.csv()即可
一定要用绝对路径,否则运行出错,最好放在R 文件区
试试 用 package “XLConnect”, 不过总会出现一些问题:比如script 无法保存,R界面无法正常工作
library(XLConnect)
wd<-choose.dir()
setwd(wd)
dir()
fnm<-dir()
fnm
wb1<-loadWorkbook(fnm[1])
gini.header<-readWorksheet(wb1,sheet=”gini”,startRow=1,endRow=1,rownames=F)
gini<-readWorksheet(wb1,sheet=”gini”,startRow=3,header=F)
library(RODBC)
随便起个名 = odbcConnectExcel(file.choose())
sqlTables(上面那个名)
随便起个名 = sqlFetch(上面那个名, “excel里的文件名”)
第一种方法:首先将当前工作目录更改所使用的文件下,利用change directory修改工作目录。
第二种方法:在read.table()中给出路径。路径中的“\”必须全部用”/”替换。
excel另存为.CSV
R命令:read.csv(file.choose()) 【如果第一行为标题行,命令为:read.csv(file.choose(),header=TRUE)】
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26