
用大数据改造农业:一个有趣的中国故事
传统农业正在遭遇着互联网的冲击,这个贯穿着整个人类文明发展的产业正在发生聚变,传感器、物联网、云计算、大数据不但颠覆了日出而作日落而息地手工劳作方式,也打破了粗放式的传统生产模式,转而迈向集约化、精准化、智能化、数据化,农业生产因此获得了“类工业”的产业属性。
大数据农业并非一两家企业就可以完成,需要各方协同才能搭建完毕,探索才刚刚上路。
传统农业正在遭遇着互联网的冲击,这个贯穿着整个人类文明发展的产业正在发生聚变,传感器、物联网、云计算、大数据不但颠覆了日出而作日落而息地手工劳作方式,也打破了粗放式的传统生产模式,转而迈向集约化、精准化、智能化、数据化,农业生产因此获得了“类工业”的产业属性。
目前的物联网、大数据等技术已经可以实现对作物种植、培育、成熟和销售等环节的管理。在整体解决方案中,底层应用主要采用物联网技术,通过对作物的信息收集,将数据反馈至云平台中,方便决策和后续提供帮助。
“大数据的应用以及物联网的成熟,将弥补很多传统农业的不足,让整个产业更加科学合理。”软通动力信息技术(集团)有限公司首席技术官方发和告诉记者。
然而,大数据农业并非一两家企业就可以完成的任务,需要各方协同才能搭建完毕,对于大数据农业以及智慧城市的探索才刚刚上路。
数据的裂变
不可否认,互联网的渗透开始颠覆传统的农业模式,农业云计算与大数据的集成和未来的挖掘应用对于现代农业的发展具有重要作用。在农业发展中,大数据不仅可以渗透到生产经营的各环节,而且能够帮助农业实现跨行业、跨专业、跨业务的发展。
农业大数据的收集在发达国家其实已经颇为成熟。Data.gov 是奥巴马政府在 2009 年推出的,该网站上有诸如植物基因组学和当地天气情况的详尽数据库,还有一些关于特定土壤条件下最佳种植作物的研究、降水量的变化、害虫和疾病的迹象,以及当地市场作物的期望价格等数据库。在此基础上,美国农业部宣布在 Data.gov 的基础上建立一个门户网站,该网站能链接到 348个农业数据集。除了美国外,一些国家也公布了关于农业数据库公开的政策方案,推动建设开放性的农业数据共享平台,以数据驱动农业的全新模式呼之欲出。
目前,中国也开始了自己的实践。在河北( 农用地、 商住地、 工业地)廊坊( 农用地、 商住地、 工业地)的郊区,软通动力的团队在做着基于大数据的“智慧农业”尝试。软通动力在农田里安装了内置摄像头的传感器,通过传感器、摄像头等终端应用收集、采集农产品(12.01, -0.04, -0.33%)的各项指标,并将数据汇聚到云端进行实时监测、分析和管理,比如每天的气温、湿度、雨量等信息,还向农民发放了智能手机和平板电脑,让大家随时记录工作成果和现场注意到的问题。
在整个智慧农业体系中,信息收集作为提供数据的基础,可以实现决策层信息反补,比如在食品安全问题上,信息的收集可以帮助相关部门实现追溯,更好地解决源头的监控难题。在源头的监管体系中,“智慧农业”主要采用条形码及RFID技术进行记录、监督,从而实现针对生产、收获、库存、流通和食品安全等的管理,再根据不同地区、不同作物类型进行相应的数据信息调整,以便监控管理软件能够很好地帮助农户种植和管理作物。
“我们现在提供给客户的是一套整体的解决方案,之前受制于整体环境发展不充分,现在条件已经成熟了。”方发和向记者坦言,如今微电子和计算机等新技术不断涌现并被采用,将进一步提高传感器的智能化程度和感知能力,在源头的数据采集上解决了此前的难题。这一切都源于市场对整个物联网设备的需求剧增,根据市场研究公司Gartner发表的报告预测,明年投入使用的物联网设备数量将由今年的38亿个增长30%至49亿个,到2020年预计增长至250亿个。
协同发展
随着互联网的渗透,催生出订单式农业已经成为业内共识——农户根据同农产品的购买者之间所签订的订单,组织安排农产品生产的一种农业产销模式。在技术层面已不存在太多障碍的情况下,大数据农业的操盘者开始将更多精力放在了社区开发、电商平台搭建等环节上。
“通过数据的反馈,会更为清晰地了解整个产业链的情况,避免传统农业的资源浪费。”方发和向记者解释道,在智慧城市和农业大数据没有兴起之前,传统农业的最大弊端是难以和市场及时接通,“供不应求”或者“菜贱伤农”的现象经常发生,传统的农业生产与市场需求时常脱节的,农民的种植完全根据经验。通过种植技术的升级也仅仅是针对生产效率的问题,从宏观上还是没有改善脱节问题。
软通动力按照工业生产方式“以销定产”,由公司搜集市场需求,继而指导农户种植。事实上,智慧社区就是一套智能信息系统,落实到具体就是引入了多个信息管理系统,如生产管理系统、销售管理系统、ERP管理系统、温室管家系统、二维码追溯系统、配送管理系统。
在管控农产品的物流配送方面,软通动力也试图利用智慧社区来促进智慧农业的一站式便捷服务的搭建工作。“智慧农业是一个需要各方一起努力协同才能做起来的领域。”方发和说,目前以阿里( 农用地、 商住地、 工业地)巴巴为首的众多电商平台也开始涉足农业领域,这对于基于大数据的智慧农业的推广来说是一件好事,毕竟阿里巴巴也是一家以大数据为核心竞争力的企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26