
不止于大而在于“准” 大数据告别“数据洪流”
随着大数据概念深入人心,越来越多的企业开始认可数据存在价值。挖掘自身数据价值、获取外部数据是企业两大需求。企业通过社会、天气、政府数据来预测供应链中断。大量的用户数据被各个网站收集利用,一些公司甚至开始利用大量的文本交流数据建立算法,从而与客户进行对话。
但现实的情况是,我们对大数据重要性的痴迷,往往会产生误导。是的,在一些情况下,从数据中能获取有价值的东西,但对于创新者来说,数据量和规模不是关键的因素,找到正确的数据才是关键。
有时候正确的数据规模也很大,也有的时候正确的数据规模很小。对于创新者,关键在于哪些关键的数据对企业最有帮助,要找到正确的数据,那么,如何才能实现这一目标呢?
一是寻找浪费源。“哪里有浪费,哪里就有机会”。无论你是工业生产、零售还是法务调查公司,搞清楚哪些因素会浪费你的资源,都能够帮你找到正确的数据。
二是如何减少浪费。在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。人类擅长于做某些类型的决定,比如在品牌营销方面,这部分应该交给人类解决。
事实上,只要理解了传统系统当中的浪费,并且知道了浪费造成的后果,最后一步就是去问一个简单的问题。如果你可以有任何数据来帮助你做出完美的决定,它会是什么?
目前数据在各行业的应用还处于探索阶段,随着行业发展,数据在各行业应用成熟,数据能带来多大价值会逐渐达成共识,数据将逐渐成为标准化商品,交易过程中的信息不对称将大大降低。
传统企业的数据应用程度与该行业的信息化程度有关,像金融、电信等行业信息化程度较高,其数据源价值很大。像医疗、制造业等行业的企业内部数据库尚未实现互联,大数据尚处于起步阶段。这点可以从大数据公司重点涉足的行业看出,多数大数据公司选择将银行、运营商作为切入点,医疗、工业大数据公司相对较少,而且体量较小。
互联网数据乍一看是开放程度最高,应用范围最广的数据源,但实际上互联网数据中最具价值的部分都被BAT等互联网巨头所拥有,目前几乎不对外开放。通过爬虫等方式获取的数据价值非常有限。不过随着移动互联网兴起,移动设备承载的用户行为数据价值被挖掘出来。
大部分公司花了太多的时间提倡大数据,但是却几乎没有花时间去想清楚哪些数据才是正确的有价值的数据。目前来看,最有价值的数据源是政府、运营商和BAT,BAT的数据完全不开放,政府的数据同样开放程度有限,而运营商的数据开放程度最高,有十几家大数据公司与运营商合作,可以接触到运营商的数据。
随着技术发展,数据加工会更趋于标准化加工流程,同业比拼的不仅仅是技术实力,对接的数据源数目和质量更为重要。目前这一领域还属于早期圈地阶段,很多行业的数据还未被有效存储、采集,未来随着各行业信息化成熟,高质量数据源是最核心竞争力。这个领域会逐步淘汰小公司,最终剩下几个大公司,新公司进入门槛越来越高
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19