
SPSS 教程 | 生存分析的 Cox 回归模型
一生存分析基本概念
1、事件(Event)
指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。
2、生存时间(Survival time)
指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。
3、删失(Sensoring)
指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。
4、生存函数(Survival distribution function)
又叫累积生存率,表达式为 S(t)=P(T>t), 其中 T 为生存时间,该函数的意义是生存时间大于时间点 t 的概率。t=0 时 S(t)=1,随着 t 的增加 S(t) 递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间 T 不超过 t 的概率。
二生存分析的方法
1、生存分析的主要目的是估计生存函数,常用的方法有 Kaplan-Meier 法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。
2、如果考虑其他影响生存时间分布的因素,可以使用 Cox 回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前提是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的 Cox 回归模型。
三举例说明
下面用一个例子来说明 SPSS 中 Cox 回归模型的操作方法。
例题:研究胰腺癌术中放疗对患者生存时间的影响
收集了下面所示的数据:
操作步骤:
SPSS 变量视图:
菜单选择:
点击进入 Cox 主对话框,如下,将 time 选入「时间」框,将代表删失的 censor 变量选入「状态」框,其余分析变量选入「协变量」框,其余默认就行。
点击「状态」框下方的「定义事件」,将事件发生的标志设为值 0,即 0 代表事件发生。
在主对话框中点击「分类」按钮,进入如下的对话框,将所有分类变量选入右边框中。
在主对话框中点击「绘图」按钮,进入如下的对话框,选择绘图的类型,这里只选择「生存函数」。由于我们关心的主要变量是 trt(是否放疗),所以将 trt 选入「单线」框中,绘制生存曲线。
在主对话框中点击「选项」按钮,进入如下的对话框,设置如下,输出 RR 的 95% 置信区间。回到主界面,点击「确定」输出结果。
结果输出:
这是案例处理摘要,有一个删失数据。
这是分类变量的编码方式。
这是对拟合模型的检验,原假设是「所有影响因素的偏回归系数均为 0」,这里可以看出 P=0.032<0.05 拒绝原假设,认为有偏回归系数不为零的因素,值得进一步分析。
这是多元回归结果,第二列 B 为偏回归系数,最后三列为 OR 值及其置信区间。由 P 值可以看出,在 0.5 的显著水平下,只有 trt 有统计学差异,OR 为 2.265。
这是协变量的平均值。
这是总体的生存函数,即累积生存率函数。
这是在控制了其他变量后,有无放疗组的生存函数对比,可以看出,术中放疗患者的生存情况优于不放疗的患者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28