
Python中异常重试的解决方案详解
大家在做数据抓取的时候,经常遇到由于网络问题导致的程序保存,先前只是记录了错误内容,并对错误内容进行后期处理。
原先的流程:
def crawl_page(url):
pass
def log_error(url):
pass
url = ""
try:
crawl_page(url)
except:
log_error(url)
改进后的流程:
attempts = 0
success = False
while attempts < 3 and not success:
try:
crawl_page(url)
success = True
except:
attempts += 1
if attempts == 3:
break
最近发现的新的解决方案:retrying
retrying是一个 Python的重试包,可以用来自动重试一些可能运行失败的程序段。retrying提供一个装饰器函数retry,被装饰的函数就会在运行失败的条件下重新执行,默认只要一直报错就会不断重试。
import random
from retrying import retry
@retry
def do_something_unreliable():
if random.randint(0, 10) > 1:
raise IOError("Broken sauce, everything is hosed!!!111one")
else:
return "Awesome sauce!"
print do_something_unreliable()
如果我们运行have_a_try函数,那么直到random.randint返回5,它才会执行结束,否则会一直重新执行。
retry还可以接受一些参数,这个从源码中Retrying类的初始化函数可以看到可选的参数:
stop_max_attempt_number:用来设定最大的尝试次数,超过该次数就停止重试
stop_max_delay:比如设置成10000,那么从被装饰的函数开始执行的时间点开始,到函数成功运行结束或者失败报错中止的时间点,只要这段时间超过10秒,函数就不会再执行了
wait_fixed:设置在两次retrying之间的停留时间
wait_random_min和wait_random_max:用随机的方式产生两次retrying之间的停留时间
wait_exponential_multiplier和wait_exponential_max:以指数的形式产生两次retrying之间的停留时间,产生的值为2^previous_attempt_number * wait_exponential_multiplier,previous_attempt_number是前面已经retry的次数,如果产生的这个值超过了wait_exponential_max的大小,那么之后两个retrying之间的停留值都为wait_exponential_max。这个设计迎合了exponential backoff算法,可以减轻阻塞的情况。
我们可以指定要在出现哪些异常的时候再去retry,这个要用retry_on_exception传入一个函数对象:
def retry_if_io_error(exception):
return isinstance(exception, IOError)
@retry(retry_on_exception=retry_if_io_error)
def read_a_file():
with open("file", "r") as f:
return f.read()
在执行read_a_file函数的过程中,如果报出异常,那么这个异常会以形参exception传入retry_if_io_error函数中,如果exception是IOError那么就进行retry,如果不是就停止运行并抛出异常。
我们还可以指定要在得到哪些结果的时候去retry,这个要用retry_on_result传入一个函数对象:
def retry_if_result_none(result):
return result is None
@retry(retry_on_result=retry_if_result_none)
def get_result():
return None
在执行get_result成功后,会将函数的返回值通过形参result的形式传入retry_if_result_none函数中,如果返回值是None那么就进行retry,否则就结束并返回函数值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23