
定性、估算与数学建模
应该说物理学是与数学结合最紧密的学科之一。而且在科学史上,物理学也是最早与数学相结合的学科,甚至很难说清谁对谁的贡献更大;比如牛顿对微积分这种纯粹数学工具的创立,最初也是源于物理学研究的实践和需要。随后才有化学、生物学及至原本归属社会科学的心理学等学科的逐渐精确量化。因而在人们心目中,物理学应该是严密的、准确的,或者说是绝对定量化的。
但当你阅读了赵凯华的《定性与半定量物理学》之后,就会发现原来在物理学中也有诸多并非精确定量甚至仅仅是定性的东西存在。
按照作者在序中的介绍,此书最初起源于1987至1989年的北京大学物理系课程。其时CUSPEA正盛——这是当时中国大学生出国所要通过的一种考试,为李政道所倡导,是没有托福和GRE时代中国大学生留美读书的途径之一,据称当时北大物理系有一半毕业生都要经由此路踏上西行求学之途。而CUSPEA考试不似中国传统考试,较为灵活,风格清新,因而需要为学生补充大量相关知识,故有此课诞生,该书即根据当时的讲稿写成。
说起来这应该算是一部教材,但笔者却是把它当做一部科普图书来阅读的,而且这是一部相当精彩的科普图书。一来在于它与生活的紧密相关,把那些复杂遥远的物理学知识纷纷融入到普通事例当中,让我们感觉到身边原来竟有如此之多的学问和课题;二来在于它的叙述方式,不但平实质朴,而且语言鲜活,同时几乎所有的例证都来自于生活。
本书共分四章:“对称性原理”、“量纲分析”、“数量级估计”和“自然界的物理学”。通过各章内容,作者很大程度上是在教读者如何进行“估算”。
估算在实际生活中具有十分重要的意义。无论是前往某地的大致距离和时间,还是购物时针对不同品牌和商家的选择,恐怕都需要我们进行简单的估算——而且我们平时也在有意或无意地运用着这一方法。大家应该都知道“费米扔纸片”的故事:在一次原子弹实验时,费米迎风扔出一把纸片,根据纸片飞舞的速度等估计数据,大致估算出了原子弹的爆炸当量;后来科学家们进行了详细计算,发现结果与费米的估算数值相当吻合。
有些人也许会不理解:如此粗劣的估算怎么可能准确无误?难道就不会有误差存在吗?诸多的小误差难道不会造成更大的误差吗?不错,是会有误差,但有时候在这里出现的误差,在那里却会为另一个误差所弥补,因而诸多的“正”“负”误差也许刚好互相抵消,使得最终结果大致准确。当然,正确使用估算方法也需要一定的思维方法和训练手段。
在这部著作里,作者就举出了诸多估算的实例。从水滴大约在聚集到怎样的程度就会从房顶滴落,到推算整个宇宙的大致密度、质量和寿命等各种参数。而其中所使用到的数学,其实并不十分复杂。
比如有一道例题是估算地球上的山体最多能有多高。我们都知道,地球上有很多高峰,但它们不可能无限制地高下去,因为超过一定的高度,山体就会因岩石的自重而把自己压垮。因而作者根据岩石的密度等数据进行估算,得出地球上的山峰不会超过15千米。而这一数据与我们的实测数据是相吻合的,因为目前地球上的最高峰珠穆朗玛峰不过8844.43米,不足9千米。唐朝诗人王维曾有诗云:“黄河远上白云间,一片孤城万仞山”,其中“仞”为中国古制单位,没有固定的标准,大约在4至8尺之间,我们姑取其中值6尺,则“万仞”即为20千米,显然比上述估算高,可见此系诗歌的夸张手法
当初阅读此书是因中国科学院物理所的一位博士所荐。其时笔者正在创作科幻小说《蚍蜉的歌唱》,要构造一座比现有高楼还高10倍的大厦;其时纽约的世界贸易中心尚未被恐怖分子所毁,楼高不过400余米,笔者担心自己所“设计”的高厦不足以支撑自重,为识者所笑。那位博士建议笔者阅读此书,并介绍相关的估算方法,结果使笔者受益匪浅。
在仔细重读此书时,笔者正好同时在北京师范大学听讲《数学模型与数学建模》的选修课程——过去没受过这一课程的正规训练,而现在学习也不仅是为了创作上的功利性用途,而是出于一种发自内心的迷恋和喜欢。但听课之后,感觉《定性与半定量物理学》中所讨论的方法,事实上与数学建模的思想非常接近,从思维方法上而言实际上具有异曲同工之妙。只不过现在的数学建模方法,往往会辅以各种软件支持,类似Matlab之类的数学软件,能够将数学建模的结果迅速而直观地表达出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23