
清华大学用大数据分析了9000条微博谣言,还在研究自动辟谣
社交媒体上的谣言总是让人猝不及防,有些甚至能在短时间造成不小的危害。比如,几天前,微信怎么也不会想到,因为一个年终回顾的HTML5页面被提前泄露,带来大量用户点击导致服务器瘫痪,然后引发了盗号的谣言。最后的结果是,短短的几个小时内,数百万人从微信提现,解绑银行卡。
社交媒体上都流传着哪些谣言?这些谣言都是谁发布的?为什么会有人相信并主动参与传播这些谣言?社交网络上的信息是海量的,这些问题似乎很难回答。不过最近,清华大学智能技术与系统国家重点实验室的研究人员借用了自然语言处理的帮助,对新浪微博上的谣言大数据进行了全面的分析,试图找出答案。
2012年5月,新浪微博设立了举报处理大厅,谣言占了不良信息中的一大部分。研究人员利用微博举报大厅公布的实时数据收集谣言信息。
他们收集了从2011年8月到2015年5月期间出现的9079条谣言,用函数模型对这些数据进行了预处理,发现了一些有趣的现象。
大部分微博谣言会在其发布的一个周内被举报并辟谣
第一,大多数微博谣言的影响力都比较小, 转发和评论数在500次以下的微博占到整体的84%。只有极少量的微博谣言具有极广的传播范围和强大的影响力 。
第二,谣言通常要传播一段时间后,才有可能遭到举报;同时, 由于传播速度快,大部分微博谣言会在其发布的一个周内被举报并辟谣 (88.9%)。
第三,大量举报谣言的用户, 所举报的谣言往往与自己相关. 例如, 微博用户 “美汁源饮料” 举报了 大量关于 “美汁源果粒橙” 饮料含有农药的谣言, 张家界纪委书记汪业元举报了大量关于 “汪业元发表 ‘对网络暴民杀无赦’ 的言论” 的谣言。
第四,大量发布谣言的用户,往往带有网络水军的性质,例如,有微博用户仅在几分钟的时间里发布了几十条微博, 其中大部分是谣言, 之后该用户就再未发过微博。
常识类谣言经常反复出现转发高峰
研究人员还根据谣言内容将其分成了5个分类:政治类谣言,例如钓鱼岛海域中日两国爆发海战;
经济类谣言,例如三星赔偿苹果几十车硬币;
欺诈类谣言,例如“四川藏区儿童需要御寒冬衣”,然后留下了一个虚假的联系电话;
社会生活类谣言,社会各界人物的花边新闻,例如六小龄童去世;
常识类谣言,例如阿司匹林能治疗心脏病。
这些谣言中,大部分属于社会生活类和政治类谣言 (约占70%)。而结合微博谣言发布、传播、高峰和消亡的过程还可以发现,不同的谣言出线转发峰值的情况也各部相同。
70%的谣言话题只有一个较大转发峰值,也就是说,被辟谣后,它们就会逐渐消亡。
另外,谣言的内容也和其转发峰值有关系:例如,常识类谣言由于受众广,辟谣难度较大,往往会反复被人们提及,出现多次爆发,约70%的常识类谣言通常有多个转发峰值。而关于名人或知名机构的谣言,由于关注人数众多,辟谣难度较小,因此发布之初就会出现较大转发峰值,但很快会被辟谣,约60%的此类谣言会在一个周内消亡。
人们为什么相信谣言
人们为什么会相信这些谣言呢?研究人员分析后将原因归结为两类:(1)知识受限,即缺乏专业知识而导致误信或无法辨认的谣言。例如,阿司匹林可以治疗急性心脏病;(2)时空受限谣言,即由于地域和时间限制无法辨认的谣言。例如, 有谣言称“杭州上城区一妇女喝了3罐可乐,两天后离开了这个世界。验尸结果是她死于细螺旋体病, 发病原因是直接用嘴对可乐罐饮用”。
自动辟谣框架
在对谣言进行分析之后,研究人员还试图建立一个自动辟谣机制。当然,在目前的技术条件下,自然语言处理技术还无法根据微博内容自动判断其是否为谣言。所以,研究人员的思路通过语义分析,自动根据谣言主题对其进行分类,然后发现最有可能判定该谣言的专家,推荐专家对疑似谣言进行鉴别。
研究人员的框架主要包括3个阶段的工作:
1. 谣言发布早期,通过用户举报和对可疑用户的监控建立疑似谣言的集合。一方面,将疑似谣言和谣言库中进行比对;另一方面, 对于在谣言库中没有匹配内容的谣言,通过查询该领域的专家库,推荐若干专家对该疑似谣言进行鉴别。
2. 谣言发布中期,通过自然语言处理技术分析疑似谣言的评论信息,通过社会网络分析技术分析疑似谣言的传播模式,判定该信息是否为谣言。
3. 谣言发布后期,对于判定为谣言的信息, 将其加入谣言库;对信息发布人进行可信性分析,确定其信用等级,将信用等级低于一定阈值的用户加入可疑用户库,在一段时间内对其发布的微博内容进行监控;对信息举报人和评论人进行专家发现,充实和更新该信息相关的知识领域的专家库。
当然,目前这一切还处于理论研究阶段,而建立可以用户库也需要以网站更严格地执行实名制为前提。用大数据、人工智能去对付谣言,前提是需要很多人交出更多的隐私,你愿意吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28