
spss:syntax对重复观测值的处理
很早的时候,大家在SPSS中处理单个变量的重复值通常都是这样的做法,首先将要处理的数据进行排序,然后将其复制后在从新变量的第二行开始粘贴,得到了两个观察量错开一个位置的变量 ,然后对这两个变量进行相减,最后挑选或删除为零的选项以获得完全无重复的数据。这样的做起来不算困难,但处理2个或2个以上变量的重复值就显得有点乏力了。下面就芒果的例子利用SPSS syntax对重复观测值的处理进行相关探讨,简要数据如下:
问题1.找出上表中zkzh相同且itemid也相同的所有记录。
关于sort cases/match files/filter等命令见下面小贴士的说明,首先看看数据处理结果:
问题2. 如何快速的分离出被筛选的变量?
还是利用上面的例子,我们利用dataset copy命令将被筛选出的观测值快速的筛选出来,形成一个新的数据集。
#1 Filter off.
#2 Dataset copy shaixuanji.
#3 DATASET ACTIVATE shaixuanji.
#4 SELECT IF thesame=0.
#5 EXECUTE .
代码解析:
第1行命令利用filter off命令清除上面的筛选效果。
第2行命令式将当前数据集复制到新的数据集shaixuanji中。
第3-4行命令是激活数据集shaixuanji,并且选择thesame变量中值为0的观测值(其他的默认删除)。
第5行命令是即时运算命令。
效果如下:
如果不想要这么多的变量,可以使用save outfile.../keep(drop)命令选择自己需要的变量。
问题3.有时候我们并不知道如何筛选重复值,而是事先观察比较重复值的相关特性,然后做下一步的处理,那么如何选择输出重复值的相关信息呢?
这里还是利用最初的数据进行说明,由于目的不同,这里筛选查找重复观测值的方式也不同。问题1中采用的是match files命令来处理重复值,这里换一种方法,利用aggregate分类汇总命令来计量重复值,进而作进一步的汇总说明,具体代码如下:
#1 AGGREGATE OUTFILE = * MODE = ADDVARIABLES
#2 /BREAK = zkzh itemid
#3 /sameCount = N.
#4 SORT CASES BY sameCount (D).
#5 COMPUTE filtervar=(sameCount > 1).
#6 FILTER BY filtervar.
#7 SUMMARIZE
#8 /TABLES=zkzh itemid samecount
#9 /FORMAT=LIST NOCASENUM TOTAL
#10 /TITLE='重复值概述'
#11 /CELLS=COUNT.
代码解析:
第1-3行命令利用aggregate命令在当前数据集中新增一个变量samecount记录分组变量zkzh和itemid相同观测值的数目,类似于GUI操作中的data--aggregate.
第4行命令对变量samecount进行降序排列.
第5行命令计算新变量filtervar,对其满足条件samecount>1赋值1,否则赋值0.
第6行命令对数据集按变量filtercar进行筛选,filtervar变量中值为0或缺失的都将被过滤.
第7-11行是制表命令,等同于GUI菜单操作中的analyze--reports--case summarises,第8行选择表中的计量变量,这里选择了zkzh等3个变量,第9-10行则是对表格的格式及标题进行设置,第11行是相关统计量的选择,这里选择的是count,除此之外还可以选择max\range\sum等其他统计量。
输出结果:
小贴士:
Filter
Filter命令是用来从当前数据集中排除观测值而不删除观测值的命令。当变量的观测值为0或缺失时这些观测值将被过滤掉(SPSS中的表现效果为)。Filter相关命令规则:
1)只允许指定一个数值变量(该变量可以是原始变量或数据转换变量)
2)使用filter off后,恢复过滤掉的观测值
3)当filter命令不包含子命令时,将按filter off命令进行等效处理,等SPSS output窗口会提示警告信息
4)Filter可以用在syntax语句的任何位置,和select if命令不同的是,filter命令在input program语句中也有同样的效果。需要注意的是这里的筛选变量需要时数据转换变量。
其他说明:
1)filter命令并没有改变当前数据集;
2)filter命令并没有提供观测值的选择过滤标准,系统缺失和用户自定义缺失值,都将被过滤掉
3)如果filter的变量名改变了,筛选效果仍然有效;但是筛选变量如果转换为字符变量时,filter命令效果将会消失
4)如果当前数据集被match files,add files或update等命令更改后,过滤变量未发生变化,filter命令仍然有效
5)如果当前数据集被一个新的数据集代替,filter命令将关闭
MATCH FILES
Match files命令可合并2个或2个以上含有相同观测值但不同变量的数据文件。例如,合并销售人员的信息和销售业绩,有点类似于数据库中的select操作。最多可以合并50个数据文件。例如,合并数据part1,part2及当前数据及可以用下面的代码,如果怕数据合并错误,可以先对这些数据集进行排序,然后利用by子命令根据排序变量进行合并,还可以利用last或first子命令赋值1说明重复值位置。
MATCH FILES FILE='/data/part1.sav'
/FILE='/data/part2.sav'
/FILE=*.
SORT Cases
Sort cases基于一个或多个变量进行排序,可以是升序(a)或降序(d),也可以是升序降序的组合。(默认为升序),Sort cases相关说明:
1)关键词by是可选的
2)By排序的变量可以是数字变量或字符变量,但不能是系统变量或临时变量(#various)
3)Sort cases是按变量顺序进行排序的,优先排序第一变量
4)Sort cases指定排序变量不能超过64个
例如:SORT CASES BY var1(A) var2(D).
*首先对变量1进行升序排列,然后再此基础上按变量2进行降序排列.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28