
在机器学习中,有成千上万甚至几十万的维度的数据需要处理,这种情况下机器学习的资源消耗是不可接受的,并且很大程度上影响着算法的复杂度,因此对数据降维是必要的。PCA(Principal Component Analysis)是一种常用的数据分析方法,也是最基础的无监督降维算法。通常用于高维数据集的探索与可视化,还可以用于数据压缩,数据预处理等。PCA通过线性变换将原始数据变换为一组各维度线性无关表示,可用于提取数据的主要特征分量及高维数据的降维,而转换后的这组变量便是我们所说的主成分。
均值和零均值化
均值
零均值化
然后将每个维度的数据进行零均值化,所谓零均值化就是让均值为0.即每个数据都减去均值。
进行去均值的原因是如果不去均值的话会容易拟合。在神经网络中,如果特征值x比较大的时候,会导致W*x+b的结果也会很大,这样进行激活函数(如relu)输出时,会导致对应位置数值变化量相对来说太小,进行反向传播时因为要使用这里的梯度进行计算,所以会导致梯度消散问题,导致参数改变量很小,也就会易于拟合,效果不好。
定义
若A为n阶矩阵,若数λ和n维非0列向量X满足AX=λX,那么数λ称为A的特征值,X称为A的对应于特征值λ的特征向量
在PCA降维过程中,本质就是把原有数据投影到新的一个空间,我们也就可以看做是在原有数据基础上求解特征向量和特征值
性质
2.对于同一个特征值对应的特征向量的非零线性组合仍是该特征值对应的特征向量
3.矩阵的特征向量总是相对于矩阵的特征值而言,一个特征值具有特征向量不唯一,一个特征向量不能对应不同特征值
从特征向量和特征值的性质我们就可以发现正好符合PCA降维过程中取方差较大和线性不相关的前k维数据作为降维后数据的目的
方差
方差是是用来表示数据的离散程度的,方差越大,离散程度越大,也就是数据波动就越大。
方差的计算:前面已经说了,需要先对每个维度的数据做零均值化,那么方差就是去均值后的平方和的均值
PCA中方差的意义:PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的(即:相关性几乎为0)。这其实就是找新的正交基的过程,计算原始数据在这些正交基上投影的方差,方差越大,就说明在对应正交基上包含了更多的信息量,对数据特征影响更大,我们暂且把这些信息量可以记为特征值。原始数据协方差矩阵的特征值越大,对应的方差越大,在对应的特征向量上投影的信息量就越大。反之,如果特征值较小,则说明数据在这些特征向量上投影的信息量很小,可以将小特征值对应方向的数据删除,从而达到了降维的目的。
协方差
协方差可以计算不同变量之间的相关性:
如果cov(x,y)=-1.变量之间完全负相关
如果cov(x,y)=1.变量之间完全正相关
如果cov(x,y)=0.变量之间完全不相关
而当x和y相等时,协方差的值就等于方差,所以也可以看作方差是协方差的一种特殊情况
在PCA的过程中我们是对原始数据做过零均值化处理的,故,协方差可以变为:
那么每个维度之间的相关性计算方式为:
协方差矩阵
协方差只能表示两个维度变量之间的相互关系,如果有多个维度随机变量,就需要使用协方差矩阵,我们假设现在又三个维度随机变量x,y,z,那么对应的协方差矩阵则为:
矩阵对角化定义
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值
如果存在一个可逆矩阵 P 使得 P-1AP 是对角矩阵,则矩阵A就被称为可对角化矩阵
如果一个矩阵与一个对角矩阵相似,我们就称这个矩阵可经相似变换对角化,简称可对角化;与之对应的线性变换就称为可对角化的线性变换
协方差矩阵对角化
上文我们已经说明了协方差矩阵是一个实对称矩阵,由实对称矩阵和相似矩阵性质我们可以得出协方差矩阵C具有的性质:
和C相似的对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)即:C的特征值就是相似对角矩阵的对角元素
我们假设C的相似对角矩阵为A,那么如果存在一个矩阵P使得P-1CP=A,根据对角矩阵的特点,我们就可以发现矩阵P的每一行就是我们所要找的协方差矩阵的特征向量,而特征值就是对角矩阵的对角元素,现在我们离整个PCA过程还有一步,先把每一个特征向量变成单位向量,然后再按照特征值的大小进行排序,取前K行特征值对应的单位向量组成的矩阵和标准化后数据相乘,就得到了我们需要的降维后的数据矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11