
python散点图:如何添加拟合线并显示拟合方程与R方?我们可以使用polyfit()函数,使用最小二乘法将一些点拟合成一条曲线.
numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False) # x:要拟合点的横坐标 # y:要拟合点的纵坐标 # deg:自由度.例如:自由度为2,那么拟合出来的曲线就是二次函数,自由度是3,拟合出来的曲线就是3次函数
# 解决坐标轴刻度负号乱码 plt.rcParams['axes.unicode_minus'] = False # 解决中文乱码问题 plt.rcParams['font.sans-serif'] = ['Simhei'] import numpy as np import matplotlib.pyplot as plt x = np.arange(-1, 1, 0.02) y = 2 * np.sin(x * 2.3) + np.random.rand(len(x))
然后打印一下看看
plt.scatter(x, y) plt.show()
parameter = np.polyfit(x, y, 3)
y2 = parameter[0] * x ** 3 + parameter[1] * x ** 2 + parameter[2] * x + parameter[3]
将拟合后的结果打印一下
plt.scatter(x, y) plt.plot(x, y2, color='g') plt.show()
p = np.poly1d(parameter) plt.scatter(x, y) plt.plot(x, p(x), color='g') plt.show()
二维散点进行任意函数的最小二乘拟合
最小二乘中相关系数与R方的关系推导
其中,
利用相关系数矩阵计算R方
correlation = np.corrcoef(y, y2)[0,1] #相关系数 correlation**2 #R方
p = np.poly1d(parameter,variable='x') print(p)
这里是把结果输出到两行里了,但是输出到两行是非常不方便的
parameter=[-2.44919641, -0.01856314, 4.12010434, 0.47296566] #系数 aa='' deg=3 for i in range(deg+1): bb=round(parameter[i],2) #bb是i次项系数 if bb>=0: if i==0: bb=str(bb) else: bb=' +'+str(bb) else: bb=' '+str(bb) if deg==i: aa=aa+bb else: aa=aa+bb+'x^'+str(deg-i) print(aa)
def Curve_Fitting(x,y,deg): parameter = np.polyfit(x, y, deg) #拟合deg次多项式 p = np.poly1d(parameter) #拟合deg次多项式 aa='' #方程拼接 —————————————————— for i in range(deg+1): bb=round(parameter[i],2) if bb>0: if i==0: bb=str(bb) else: bb='+'+str(bb) else: bb=str(bb) if deg==i: aa=aa+bb else: aa=aa+bb+'x^'+str(deg-i) #方程拼接 —————————————————— plt.scatter(x, y) #原始数据散点图 plt.plot(x, p(x), color='g') # 画拟合曲线 # plt.text(-1,0,aa,fontdict={'size':'10','color':'b'}) plt.legend([aa,round(np.corrcoef(y, p(x))[0,1]**2,2)]) #拼接好的方程和R方放到图例 plt.show() # print('曲线方程为:',aa) # print(' r^2为:',round(np.corrcoef(y, p(x))[0,1]**2,2))
Curve_Fitting(x,y,3)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29