我对数据科学的热情始于大约两年半前。我在做一份与数据科学无关的工作。对我来说,转行是一个很大的挑战,因为我有很多东西要学。 经过两年的学习和奉献,我终于找到了第一份数据科学家的工作。当然,我 ...
2022-02-28来自顶级自由职业者的实用技巧 如果你是一个书呆子般的数据科学家,想要开始作为一个独立(远程)自由数据科学家工作,这篇文章是为你准备的。从现在朝九晚五的工作过渡到远程自由职业是一种解放的经历。最 ...
2022-02-28想了解2021年新数据自由职业者的数据分析咨询率吗?作为一名数据分析自由职业者,你准备好提高你的费率了吗?你来对地方了。 继续阅读,学习我的最佳策略,以帮助你作为一个数据分析自由职业者或顾问的2倍 ...
2022-02-28当我第一次从金融学过渡到数据科学时,我觉得自己就像站在了世界之巅--我在我梦想的领域找到了一份工作,我的职业轨迹已经确定,我只会低着头努力工作,哪里会出错?嗯,有几件事……在接下来的一年里,作 ...
2022-02-28数据科学和机器学习可以以不同程度的效率和生产力进行实践。无论应用领域或专业,数据科学家--初学者或经验丰富的专业人员--都应努力提高他/她在典型数据科学任务的所有方面的效率, 统计分析, ...
2022-02-28为什么要费心区分自己呢? 因为有大量的竞争来获得数据科学家的工作。 找一份数据科学工作比以往任何时候都更难--如何将它转化为你的优势-kdnuggets 尽管许多有抱负的数据科学家发现,找到一份工作变得 ...
2022-02-28分析工程师是DBT创造(并使之成为可能)的一个新职位。如果一个数据工程师(DE)和一个数据分析师(DA)结婚,他们有一个女婴,这个女婴将是一个分析工程师(AE)。嗯,它不是那样工作的,但你明白了。 语境 A ...
2022-02-28在这篇文章中,我将给出三种方法,在这些方法中,您可以自己获得实际的数据科学经验。通过完成这些项目,您将对SQL、Pandas和Machine learning Modeling有更好的理解。 首先,我将为您提供实际的SQL案例 ...
2022-02-28当我们中的许多人开始从事自由职业时,我们感到无比兴奋。在任何地方工作,选择你的客户,只做你喜欢的项目,感觉都很棒。 但过一段时间,你可能会开始感到精疲力尽。作为一个数据自由职业者,你可以服务的 ...
2022-02-28在我之前的关于数据科学面试准备的文章中,我列出了机器学习、统计学和概率理论中要练习的技术问题。我还讨论了可以用来在数据科学面试之前和期间预先编写研究问题的策略。这篇文章是数据科学面试准备系列的 ...
2022-02-28数据科学是近年来最热门的领域之一,吸引了大量人才加入顶级公司数据科学团队的竞争。有很多文章教你DS面试的toprep如何“从其他面试者中脱颖而出”,但旅程肯定不会止步于被录用。得到一份工作只是第一步; ...
2022-02-28数据科学是成功的。全球成千上万的学生报名参加在线课程,甚至数据科学硕士课程。 数据科学领域是一个竞争非常激烈的市场,尤其是在一家大型科技公司获得一份(假设的)梦想工作。积极的消息是,通过充分 ...
2022-02-28作为一个在数据科学领域工作了十多年的人,看到人们预言该领域将在10年内如何灭绝是令人沮丧的。给出的典型原因是emergingAutoMLtools将如何消除从业者开发自己算法的需求。 我发现这样的观点特别令人沮丧 ...
2022-02-28数据分析师是世界上最受欢迎的专业人士之一。这些人借助数据帮助公司做出知情的商业决策。 现在有很多关于数据科学的炒作。 然而,数据科学的进入门槛非常高。这是一个竞争非常激烈的领域,每个来自不同 ...
2022-02-28以下是受此博客启发的KDnuggets民意调查结果: 放松!数据科学家不会在10年内灭绝,但角色会改变 随着人工智能的进步继续突飞猛进,在基线上获得数据科学已经变得越来越民主化。该领域的传统进入壁垒 ...
2022-02-28由品牌娱乐网人工智能主管泰勒·福克曼 我知道你在想什么--“我当然知道怎么编码,你疯了吗?” 你每天在Jupyter笔记本上写成百上千行的代码。很明显,你可以编码。这并不像是在手工或在Excel中训练机 ...
2022-02-28c 在过去的五年里,当python编程成为潮流时,我一直在数据科学领域工作。当时,在2016年,神经网络和深度学习只是一些时髦的词。当时有一场关于谷歌自动驾驶汽车和强化学习的炒作。但是,大多数数据科学爱好者 ...
2022-02-28我只想在前言中说,这篇文章更多地反映了我是如何走到今天的。我并不是说你会通过遵循同样的步骤来实现同样的事情,但我认为这可能会为你提供一个独特的视角,这是你以前可能没有想过的。 说到这里,让我们 ...
2022-02-28网络安全顾问斯特凡·马拉杰。 作为数据科学家,我们有时会有点过于…科学地看待事物。虽然数据科学家的核心技能与以往基本相同--统计学、数学和逻辑学--但总有新的技能出现。有时,这些与计算机编程的新范 ...
2022-02-28数据科学无疑是当今最受欢迎的领域。难怪拥有熟练技能的数据科学家在世界各地的工作中得到丰厚的回报。 现在,你可以是一个对目前的工作很满意的数据科学家,也可以是一个有抱负的人,希望在数据科学领域取 ...
2022-02-28随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28