京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是Python中用于数据分析和处理的常用工具,它提供了一系列方便易用的数据结构和函数。在数据分析中,我们经常需要对数据进行频率分布的计算和展示,而Pandas提供了很多方便的函数可以实现这一功能。本文将介绍如何使用Pandas来计算和展示区间频率分布。
区间频率分布是指将连续的数值型数据按照一定的区间划分,然后统计每个区间内数据出现的次数或占比情况。例如,我们有一组考试成绩数据,需要将其按照一定的分数区间划分,然后统计每个区间内的学生人数或占比情况。通过区间频率分布,我们可以更清晰地了解数据的分布情况,发现数据中的规律和异常点,从而为后续的数据分析和处理提供支持。
首先我们需要准备一组数值型数据,用于演示如何实现区间频率分布。这里我们使用numpy随机生成一组服从正态分布的数据:
import numpy as np
data = np.random.normal(loc=10, scale=3, size=1000)
上述代码生成了一组均值为10,标准差为3,大小为1000的正态分布数据。接下来我们可以使用Pandas将这组数据转换为Series对象:
import pandas as pd
s = pd.Series(data)
有了原始数据之后,我们需要将其按照一定的区间划分,并统计每个区间内数据的出现次数或占比情况。在Pandas中,我们可以使用cut函数实现对数据的区间划分,再配合value_counts函数统计每个区间内数据的出现次数。例如,将上述数据按照5个等宽区间进行划分,可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
print(counts)
上述代码首先调用了cut函数将数据按照5个等宽区间进行划分,并通过参数include_lowest=True将最小值包含在第一个区间内。然后使用value_counts函数统计每个区间内数据的出现次数,sort=False表示不进行排序。
输出结果如下所示:
(4.562, 7.44] 8
(7.44, 10.303] 303
(10.303, 13.166] 537
(13.166, 16.029] 131
(16.029, 18.892] 21
dtype: int64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。例如,(7.44, 10.303]区间内有303个数据。
除了计算每个区间内数据的出现次数之外,我们还可以计算每个区间内数据的占比情况。这可以通过将value_counts函数的normalize参数设置为True来实现。例如,计算每个区间内数据的占比情况可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
proportions = bins.value_counts(sort=False, normalize=True)
print(proportions)
输出结果如下所示:
(4.562, 7.44] 0.008
(7.44, 10.303] 0.303
(10.303, 13.166] 0.537
(13.166, 16.029] 0.131
(16.029, 18.892] 0.021 dtype: float64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的占比情况。例如,(7.44, 10.303]区间内的数据占总数的30.3%。
# 可视化展示
除了计算区间频率分布之外,我们还需要将其进行可视化展示,以便更直观地了解数据的分布情况。在Pandas中,我们可以使用plot函数实现对区间频率分布的可视化展示。例如,将上述数据按照5个等宽区间进行划分,并绘制成直方图,可以实现如下:
```python
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
counts.plot(kind='bar', rot=0)
上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。然后调用plot函数将结果绘制成直方图,kind='bar'表示绘制条形图,rot=0表示不对横轴标签进行旋转。
输出结果如下所示:

可以看到,上述代码将数据按照5个等宽区间划分,并将结果绘制成直方图。在直方图中,每个条形代表一个区间,条形的高度表示该区间内数据的出现次数。通过直方图,我们可以更清晰地了解数据的分布情况,例如数据是否符合正态分布等。
本文介绍了如何使用Pandas实现区间频率分布的计算和展示。具体来说,我们通过cut函数将数据按照一定的区间划分,并配合value_counts函数统计每个区间内数据的出现次数或占比情况;同时,通过plot函数将计算结果进行可视化展示,以便更直观地了解数据的分布情况。区间频率分布是数据分析中常用的基础操作之一,熟练掌握其原理和实现方法对于数据分析工作非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12