京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Matplotlib是Python中最流行的数据可视化库之一,它提供了许多绘图工具和函数,可以创建各种类型的图形。其中包括网格线(Grid)功能,可以在图形上添加水平和垂直线条以辅助读取数据。但默认情况下,网格线会覆盖数据点和线条,这可能会使图像难以阅读。本文将介绍如何使用Matplotlib让grid网格线处于图像底部。
Matplotlib图形中的每个元素都有一个zorder属性,该属性控制元素在图形中的层数。具有更高zorder值的元素位于具有较低zorder值的元素之上。默认情况下,网格线的zorder值为1,因此它们位于其他元素的顶部。要将它们移动到底部,可以将其zorder属性设置为0或更低的值。例如:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True, zorder=0) plt.show()
在此示例中,我们创建一个基本的折线图并启用网格线。ax.grid(True)命令将在图形中显示网格线,默认情况下zorder值为1。我们在此命令中将zorder属性设置为0,以便网格线位于其他元素之下。最后,使用plt.show()函数显示图形。
另一种将网格线移动到底部的方法是使用set_axisbelow函数。该函数可用于设置轴线(包括网格线)在图像上的层数。默认情况下,轴线位于所有其他元素的顶部。以下是一个示例:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True) ax.set_axisbelow(True) plt.show()
在此示例中,我们创建了与前面相同的折线图,并在轴对象上启用了网格线。然后,我们使用ax.set_axisbelow(True)命令将轴线置于其他元素之下。最后,使用plt.show()函数显示图形。
我们还可以使用Matplotlib的rcParams全局设置将所有图形的网格线移动到底部。rcParams是一个字典对象,它存储了Matplotlib的默认参数和配置选项。使用rcParams,可以在不影响代码中的单个图形的情况下更改Matplotlib的全局行为。以下是一个示例:
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [4, 5, 6])
ax.grid(True)
plt.show()
在此示例中,我们使用plt.rcParams['axes.axisbelow'] = True命令将axes.axisbelow参数设置为True。这告诉Matplotlib将所有轴线置于其他元素之下,包括网格线。然后我们创建了一个基本的折线图并启用了网格线。最后,使用plt.show()函数显示图形。
在Matplotlib中,有多种方法可以将网格线移动到图像底部。我们可以设置网格线的zorder属性、使用set_axisbelow函数或通过rcParams全局设置更改Matplotlib的默认行为。无论哪种方法,它们都能提高图形的可读性,并使数据更易于解读。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12