Matplotlib是Python中最流行的数据可视化库之一,它提供了许多绘图工具和函数,可以创建各种类型的图形。其中包括网格线(Grid)功能,可以在图形上添加水平和垂直线条以辅助读取数据。但默认情况下,网格线会覆盖数据点和线条,这可能会使图像难以阅读。本文将介绍如何使用Matplotlib让grid网格线处于图像底部。
Matplotlib图形中的每个元素都有一个zorder属性,该属性控制元素在图形中的层数。具有更高zorder值的元素位于具有较低zorder值的元素之上。默认情况下,网格线的zorder值为1,因此它们位于其他元素的顶部。要将它们移动到底部,可以将其zorder属性设置为0或更低的值。例如:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True, zorder=0) plt.show()
在此示例中,我们创建一个基本的折线图并启用网格线。ax.grid(True)命令将在图形中显示网格线,默认情况下zorder值为1。我们在此命令中将zorder属性设置为0,以便网格线位于其他元素之下。最后,使用plt.show()函数显示图形。
另一种将网格线移动到底部的方法是使用set_axisbelow函数。该函数可用于设置轴线(包括网格线)在图像上的层数。默认情况下,轴线位于所有其他元素的顶部。以下是一个示例:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True) ax.set_axisbelow(True) plt.show()
在此示例中,我们创建了与前面相同的折线图,并在轴对象上启用了网格线。然后,我们使用ax.set_axisbelow(True)命令将轴线置于其他元素之下。最后,使用plt.show()函数显示图形。
我们还可以使用Matplotlib的rcParams全局设置将所有图形的网格线移动到底部。rcParams是一个字典对象,它存储了Matplotlib的默认参数和配置选项。使用rcParams,可以在不影响代码中的单个图形的情况下更改Matplotlib的全局行为。以下是一个示例:
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [4, 5, 6])
ax.grid(True)
plt.show()
在此示例中,我们使用plt.rcParams['axes.axisbelow'] = True命令将axes.axisbelow参数设置为True。这告诉Matplotlib将所有轴线置于其他元素之下,包括网格线。然后我们创建了一个基本的折线图并启用了网格线。最后,使用plt.show()函数显示图形。
在Matplotlib中,有多种方法可以将网格线移动到图像底部。我们可以设置网格线的zorder属性、使用set_axisbelow函数或通过rcParams全局设置更改Matplotlib的默认行为。无论哪种方法,它们都能提高图形的可读性,并使数据更易于解读。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26