作者:丁点helper
来源: 丁点帮你
前面2篇R语言相关的文章以泰坦尼克号的数据为例,介绍了描述性统计中用到的计算操作,以及柱形图的绘制操作。今天我们继续聊聊如何在R中绘制直方图和散点图。
绘制直方图
仍使用titanic.csv这个数据。
# 导入数据 titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE) names(titanic) # 查看titanic中的变量名 [1] "pclass" "survived" "sex" "age" "sibsp" "parch"
假设我们想对age这个变量绘制直方图,了解泰坦尼克号上乘客的年龄分布,可用hist()这个函数:
hist(titanic$age)
上图中直方图标题、颜色、坐标轴名称均可调整:
hist(titanic$age, col='orange', main='Passenger Age', lwd=2, xlab='Age (years)')
其中,col、main、xlab这三个命令在之前的文章中讲过;lwd为线条宽度命令,取值须为整数,默认值为1。
绘制散点图
接下来我们看看如何绘制散点图。还是老规矩,要用到的数据可通过以下方式下载:
文件名: wb.csv
链接: https://pan.baidu.com/s/1gOAuccW5i8cIW5HaPHnm8A
密码: nc5u
这是世界银行(word bank)对部分国家社会、经济、环境指标的统计数据。
# 导入数据 wb <- read.csv("//Users//Desktop//wb.csv",header = TRUE) names(wb) # 查看wb中的变量名 [1] "Country" "Code" "Population" "Rural" "GNI" "IncomeTop10" "Imports" [8] "Exports" "Military" "Cell" "Fertility66" "Fertility16" "Measles" "InfMort" [15] "LifeExp" "PM2.5" "Diesel" "CO2" "EnergyUse" "FossilPct" "Forest94" [22] "Forest14" "Deforestation" "GunTotal" "GunHomicide" "GunSuicide" "GunUnint" "GunUndet" [29] "GunsPer100"
这里我们先关注第五个变量『GNI』,其意义是人均国民收入。GNI是Gross National Income的缩写;再关注第18个变量『CO2』,其意义是人均二氧化碳排放量。
一项研究想观察人均国民收入和人均二氧化碳排放量之间存在何种关系,由于二者均为数值型变量,我们可以用散点图的方式直观感受一下:
plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)", xlab="Gni per capita", ylab="CO2 per capita", col="red", pch=19) # col命令的取值还可以是数字,本例中red对应的数字是2 plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)", xlab="Gni per capita", ylab="CO2 per capita", col=2, pch=19)
上面两条代码的运行结果是一样的。wb$GNI 和 wb$CO2 分别为散点图的横轴和纵轴;pch表示点的形状,取值为整数,本例中用到的19表示圆点。
下面用一个图片来给大家介绍1-20的数字分别代表什么颜色、什么形状:
plot(c(1:20),rep(1,20),col=c(1:20),pch=c(1:20),cex=2)
cex表示对图中的文本或符号放大多少倍,大家可自行在R中操作,感受cex=1时图像的变化。
举个例子,col=15:黄色;pch=15:方块。在R中,可选的颜色还有很多,大家可以查看下图中的颜色名称,绘图时在col命令中输入即可。
手机用户可横屏查看效果更佳,告别大红大蓝秋裤色就靠它了~
今天就学到这里啦,之后还有更多R绘图课程来和大家见面!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27